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Abstract Spinor relativity is a unified field theory, which derives gravitational and electro-
magnetic fields as well as a spinor field from the geometry of an eight-dimensional complex
and ‘chiral’ manifold. The structure of the theory is analogous to that of general relativity:
it is based on a metric with invariance group GL(C2), which combines the Lorentz group
with electromagnetic U(1), and the dynamics is determined by an action, which is an inte-
gral of a curvature scalar and does not contain coupling constants. The theory is related to
physics on spacetime by the assumption of a symmetry-breaking ground state such that a
four-dimensional submanifold with classical properties arises. In the vicinity of the ground
state, the scale of which is of Planck order, the equation system of spinor relativity reduces
to the usual Einstein and Maxwell equations describing gravitational and electromagnetic
fields coupled to a Dirac spinor field, which satisfies a non-linear equation; an additional
equation relates the electromagnetic field to the polarization of the ground state condensate.

Keywords General relativity · Spinors · Unification · Symmetry breaking · Extra
dimensions

1 Introduction and Summary of Results

In covariant approaches to quantum gravity the spacetime metric g is usually decomposed
into a background metric, which is considered as a classical field, and a deviation h from
this background, which is quantized. In the simplest case the Minkowski metric is taken as
background:

gμν = ημν + λP hμν (1.1)

One may consider such a theory as arising from a more fundamental theory with quantized
g by the development of a vacuum expectation value:

〈gμν〉0 = ημν (1.2)
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h and the other fields of the theory then describe excitations above this vacuum. In quantum
gravity the quantized metric g is defined on a real four-dimensional manifold.

The starting point of spinor relativity is an eight-dimensional ‘chiral’ manifold, as de-
scribed below. At the classical level the theory is analogous to general relativity, i.e. it is
based on a metric as fundamental field, from which a connection is derived, and the dy-
namics of the metric is determined by an action functional with a curvature scalar in its
integrand. However, at the quantum level the metric is supposed to be far from classical be-
haviour and the eight-dimensional manifold may not be considered as a classical manifold.
The possibility is investigated that the theory develops a symmetry-breaking ground state
such that a preferred four-dimensional submanifold arises, which attains classical properties
and is identified with spacetime. The reason that such an approach might be useful is that it
opens new possibilities for unification. In spinor relativity the dynamics is determined by an
action functional consisting of a single term. The usual equations with coupling constants
arise as an effective theory describing low energy excitations above the ground state, the
scale of which is of Planck order. In particular, the kinetic term ∼ F 2 in the Lagrangian of
the electromagnetic field is considered as not being fundamental.

In order to see how an alternative derivation of the Maxwell equations might be possi-
ble, it is useful to investigate a 3 + 1 decomposition of linearized gravity on Minkowski
spacetime. The Riemann tensor decomposes into four symmetric spatial tensors and four
vectors:

Rm0n0 = Emn + εmnkBk

1

2
Rm0rsεrsn = Bmn − εmnkEk

(1.3)
1

2
εmrsRrsn0 = Hmn − εmnkDk

−1

4
εmrsRrspqεpqn = Dmn + εmnkHk

This decomposition is valid for the Riemann tensor of an arbitrary metric connection, which
need not be torsion-free. The requirement of vanishing torsion in general relativity yields
additional symmetries of the Riemann tensor, which enforce a vanishing of in particular
‘magnetic’ components:

H = B, H = B = 0, D + E = 0, TrB = 0 (1.4)

The Einstein equation Gαβ = 8πλ2
P Tαβ then relates the ‘electric’ components of the Rie-

mann tensor with matter fields

D − E + TrE = 	, D − E = M, TrD = −μ (1.5)

where μ is the energy density, M the energy flux and 	 the stress tensor of matter, and
the gravitational coupling constant has been absorbed into the definition of these fields for
simplicity. The linearized Bianchi identity Rαβ[γ δ,ε] = 0 for a general Riemann tensor (1.3)
decomposes as follows

DivB − rotE = 0 DivD + rotH = 0

Ḃ + RotE +̂TenB = 0 Ḋ − RotH +̂TenD = 0 (1.6)

2Ė − rotB + Div̂E = 0 2Ḣ + rotD + Div̂H = 0
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where the tensor differential operators generalize the usual rotation and divergence of a
spatial vector, and a ‘hat’ on a spatial tensor denotes subtraction of its trace.1

The linearized Bianchi identity thus decomposes into two independent equation systems,
the first of which involves fields of type E and B only, while the second involves fields of
type D and H. Each of these equation systems resembles the homogenous Maxwell equa-
tions. Equations (1.4) and (1.5) may now be used to eliminate some of the components of
the Riemann tensor in favour of matter fields. This yields besides energy and momentum
conservation (μ̇ + divM = 0 and Ṁ + Div	 = 0) equations for the trace-free parts of the
fields E and B, which are denoted by a subscript zero

DivB0 = Jm DivE0 = Je

(1.7)
Ḃ0 + RotE0 = 0 Ė0 − RotB0 = −J

where the ‘gravitational currents’ on the right hand sides of these equations are defined by:

Je = −Div	0 + 1

3
∇μ, Jm = −1

2
rotM, J = 	̇0 − 1

3
μ̇ + 1

2
̂TenM (1.8)

Equation (1.7) resembles the complete, i.e. homogenous and inhomogenous Maxwell equa-
tions, this time for one set of fields only.

These investigations suggest that at a fundamental level there is in addition to the elec-
tromagnetic field F an ‘axial’ field ˜F with components ˜Fk0 = Hk and − 1

2εkmn
˜Fmn = Dk .

The Bianchi identities of these fields yield two sets of homogeneous Maxwell equations in
analogy to (1.6):

divB = 0 divD = 0
(1.9)

Ḃ + rotE = 0 Ḋ − rotH = 0

The electromagnetic field tensors are related to matter by an ‘electromagnetic Einstein equa-
tion’

Fαβ + ˜F ∗
αβ = Pαβ (1.10)

where P is the polarization tensor. This equation relates the fields D − E and B − H to
electric polarization and magnetization respectively and may be used to eliminate D and H

from the Bianchi identities (1.9) yielding the complete Maxwell equations for E and B with
current density given by the divergence of the polarization tensor.

In spinor relativity an axial field is present in form of the gauge field of a D(1)-symmetry
of the theory, and the derivation of the Maxwell equations proceeds along the lines indicated
above. However, although this formally resembles the macroscopic description of polariz-
able matter in terms of four field vectors, there is an essential difference concerning the
significance of the polarization tensor. Polarization is usually defined as the reaction of a
medium to an external electromagnetic field. This is also the case for vacuum polarization,
where the bare electromagnetic field polarizes the virtual fermion-antifermion pairs of the
vacuum. In spinor relativity on the other hand, there is no bare electromagnetic field; rather,

1(DivM)k = Mk(m,m), (RotM)mn = εrs(mMn)s,r , (̂TenV )mn = V(m,n) − δmnV(k,k), ̂M = M − TrM.
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the electromagnetic field is considered as a composite state of a fundamental spinor field � ,
which determines the polarization tensor by an equation of the form:

Pαβ ∼ �̄[γα, γβ ]� (1.11)

� is not the field of a particular fermion of definite mass, but is comparable to the spinor
field in Heisenberg’s unified field theory [1]. In this theory Heisenberg introduces a spinor-
isopinor field, which satisfies a non-linear differential equation. The free field operators,
which describe the elementary particles, Heisenberg considers as secondary objects, which
are contained asymptotically in functionals of the fundamental spinor field. This point of
view of free field operators may be compared with the quantum mechanical description of
the hydrogen atom: here the ‘free field operators’ create and annihilate the stationary states;
these operators are functions of the fundamental operators for position and momentum. The
Heisenberg field is somewhat similar to the quark field; however, an essential difference is
that QCD assumes the existence of independent gauge particles, which are not composites
of the quarks.

The field � of spinor relativity is inherent in the structures of the chiral manifold, as
described below. Its square �̄� is assumed to develop a ground state expectation value,
which consistency requires to be of Planck order ∼ λ−3

P . One may imagine the ground state
as a condensate of fermion-antifermion pairs of the field � and interpret (1.11) as describing
the polarization of these pairs, which generates the electromagnetic field in a similar way as
the spins of the electrons generate the magnetic field of a ferromagnet.

Spinor relativity is defined on a chiral manifold Mch. Such a manifold is the product of
two diffeomorphic manifolds Mr and Ml , which are called the right and left manifold respec-
tively, equipped with a chiral structure, which is analogous to a complex structure. While
the latter structure is preserved by holomorphic coordinate transformations, the structure-
preserving coordinate transformations on a chiral manifold are those, which leave the right
and left manifolds separately invariant. One may imagine a chiral manifold with Mr and Ml

forming a ‘double layer’; the points of the chiral manifold consist of arbitrary pairs of points
pr and pl on the individual manifolds. This picture is convenient, since the ground state
of the theory is supposed to break the chiral symmetry of independent coordinate transfor-
mations on the right and left manifold, leaving unbroken the symmetry under joint coordi-
nate transformations. The ground state thus establishes a preferred correspondence between
points on the right and left manifold. These preferred pairs (pr,pl) define a submanifold S
of the chiral manifold, which will be identified with spacetime.

General relativity may be considered as a gauge theory of the Lorentz group.2 There are
distinguished bases in the tangent bundle of the spacetime manifold, the orthonormal tetrad
bases, with respect to which the metric takes Minkowski form:

gμνe
μ

αe
ν
β = ηαβ (1.12)

These bases are not unique, there is a gauge freedom to perform local Lorentz transforma-
tions on the tetrads. The Levi-Civita connection of the metric provides a gauge covariant
derivative. Since spinor relativity aims at a unification of gravitation and electromagnetism,

2The Lorentz gauge fields are however not independent but determined by the metric. In order to interpret
gravity as a gauge theory of the Lorentz or Poincare group, Einstein-Cartan theory seems to be more appro-
priate [2].
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its gauge group should contain both the Lorentz group and electromagnetic U(1). A pre-
ferred group of this type is

GL(C2) = D(1) × U(1) ◦ SL(C2) (1.13)

which already plays an important part in physics: it is isomorphic to the group of Dirac
spinor transformations, which leave the Dirac product ψ̄ψ invariant and commute with the
chiral projectors.

In order to construct a GL(C2)-gauge theory on a chiral manifold, the right and left
manifolds are each chosen as complex manifolds of dimension two, i.e. their real dimension
is four, as it should be in order to identify the submanifold S with spacetime. The tangent
bundle of the chiral manifold is further equipped with a symmetric inner product, which
between right sections φr ∈ W(Mr) and complex conjugate left sections φ̄l ∈ W̄ (Ml) takes
the form

(φ̄l, φr) = φ̄Ṁ
l gṀNφN

r (1.14)

where dotted indices refer to the complex conjugate tangent spaces. gṀN , which in general is
not hermitian, is called the Dirac metric. All fields are functions of pairs of points on Mr and
Ml , e.g. the value of φr ∈ W(Mr) also depends on the point chosen on Ml . The inner product
between two right sections or between two left sections is zero, which in particular means
that there is no (pseudo-)riemannian or hermitian structure on the individual manifolds Mr

and Ml .
In analogy to orthonormal tetrad bases on spacetime, spinor bases may be introduced on

the chiral manifold, which are defined by the requirement that the Dirac metric take the form
of a unit matrix:

gṀNĒṀ
l ȦEN

r B = δȦB (1.15)

The transformation matrices Er and El , which transform from coordinate bases to spinor
bases in the right and left tangent bundle respectively, are called dyad fields, in analogy to
the tetrad fields of general relativity. The gauge group G2 of spinor relativity is the group of
basis transformations, which relate spinor bases to each other; it is isomorphic to GL(C2):

G2 = {(Kr,Kl) ∈ GL(C2) × GL(C2) | K+
l Kr = 12} ∼= GL(C2) (1.16)

The gauge group acts on sections of the tangent bundle in a spinor basis in form of right and
left spinor representations of the Lorentz group (together with U(1) and D(1) transforma-
tions), whence these sections are called spinor fields.

Despite the apparent analogy between orthonormal tetrad bases in general relativity and
spinor bases in spinor relativity, there is an important difference concerning quantum theory.
According to (1.12) a quantized metric implies that the tetrad field also must be quantized.
However, it is always possible to adapt the orthonormal bases to the coordinates such that
corresponding to (1.2) the tetrad fields have unit vacuum expectation value:

〈eμ
α〉0 = δμ

α (1.17)

This means that the transformation from coordinates to orthonormal bases on spacetime is
essentially a classical transformation with only small quantum corrections. In contrast to
the spacetime metric, the Dirac metric is assumed to fluctuate strongly and is not required to
have a simple ground state expectation value. According to (1.15) it is consequently not pos-
sible to choose a spinor basis such that both dyad fields have unit ground state expectation
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value. This means that the transformation from coordinates to spinor bases on a chiral man-
ifold is a quantum basis transformation, which cannot be interpreted classically. A similar
quantum basis transformation relates spinor fields and vector fields, as described below.

The Dirac metric gives rise to a 2-form in analogy to the Kähler form on a hermitian
manifold. This form is further required to satisfy the chiral Kähler condition

d̄chĝ = 0, ĝ = igṀN dzṀ
l ∧ dzN

r (1.18)

where the chiral differential dch = ∂r + ∂̄ l is the sum of the holomorphic differential on the
right manifold and the antiholomorphic differential on the left manifold. A chiral manifold
equipped with a complex structure commuting with the chiral structure and a Dirac metric
satisfying the chiral Kähler condition is called a Dirac manifold. A covariant derivative on
a Dirac manifold is provided by the Dirac connection. It is defined by its right and left
connection matrices, which are given in terms of the Dirac metric as follows

	M
r N = gMṠ∂gṠN , 	M

l N = g+MṠ∂g+
ṠN

(1.19)

where the inverse Dirac metric is denoted by upper indices. In general relativity the Levi-
Civita connection on spacetime is determined uniquely by the two conditions of compatibil-
ity with the metric and vanishing torsion. The Dirac connection is also uniquely determined
by two conditions, the first being compatibility with the Dirac metric, while the second re-
quires the components of the connection matrices to be differential forms of type (1,0). The
torsion of the Dirac connection does in general not vanish,3 which is essential for spinor
relativity, since the contracted torsion provides the fundamental spinor field �:

� =
(

χ

ϕ

)

, χ+
A = T B

r BA, ϕ+
A = T B

l BA (1.20)

In analogy to general relativity a dynamical equation for the Dirac metric is obtained
from an action principle with action functional given by the integral over spacetime of a
real curvature scalar density. As a consequence of the chiral Kähler condition, the Dirac
metric may not be varied freely on the entire chiral manifold but only on a four-dimensional
submanifold. The requirement of stationary action yields the spinor Einstein equation

RȦB − RgȦB = χ+
B ϕȦ − Dr

BϕȦ (1.21)

where the Ricci spinor and curvature scalar on its left hand side are defined as contractions
of the right curvature spinor:

RȦB = RC
r BȦC, R = RA

A (1.22)

In contrast to pure general relativity, where the Einstein tensor is required to vanish, a ‘matter
term’ involving the spinor field and its covariant derivative arises on the right hand side of
the spinor Einstein equation in a natural way.

3The Dirac metric may be considered as an indefinite hermitian metric on the eight-dimensional manifold

Mch of the special form
( 0 g+
g 0

)

. The Dirac connection is then a special case of the canonical connection

on a hermitian holomorphic vector bundle [3, 4]. In case of a Kähler manifold, i.e. if the metric satisfies
the (non-chiral) Kähler condition dRe ĝ = 0, the torsion vanishes and the canonical connection is equal to
the Levi-Civita connection of the underlying eight-dimensional pseudo-riemannian metric. The chiral Kähler
condition is less restrictive, allowing for a non-vanishing torsion.
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The fundamental spinor field has a two-fold significance in spinor relativity. On the one
hand it is directly interpreted as a physical spinor field, on the other hand it allows to de-
fine distinguished basis transformations in the tangent bundle of a Dirac manifold, which
associate a Minkowski basis to a given spinor basis. These basis transformations are accom-
plished by spinor tetrad fields ξ and ζ , which carry a spinor and a vector index and are
defined in terms of the fundamental spinor field and Weyl matrices by the expressions:

ξα
A = (ϕ+σα)A√

ϕ+χ
, ζ α

A = (χ+σ̂ α)A√
χ+ϕ

(1.23)

A section of the tangent bundle in a Minkowski basis is called a vector field. Its components
are related to the spinor field components as follows:

V α = ξα
AφA

r + ζ α

Ȧ
φ̄Ȧ

l ; φA
r = 1

2
ξA
α V α, φA

l = 1

2
ζA
α V̄ α (1.24)

The Minkowski bases may further be decomposed into their real and imaginary parts, defin-
ing respectively the four-dimensional subspaces of classical and axial vectors. SL(C2)-
gauge transformations are represented on vector fields by real Lorentz transformations,
while electromagnetic phase transformations are represented trivially. The decomposition
of the tangent bundle into classical and axial vector fields is however not invariant, since
D(1)-gauge transformations mix them. The inner product in the tangent bundle takes the
form of the Minkowski metric on classical vectors, justifying the name of Minkowski bases.

Minkowski bases do not respect the complex and chiral structures of the Dirac manifold,
these are represented by non-constant fields

Complex structure: φA
r → iφA

r , φA
l → iφA

l ⇒ V α → Iα
βV β

(1.25)
Chiral structure: φA

r → φA
r , φA

l → −φA
l ⇒ V α → −iI α

βV β

where the tensor I , which represents the complex structure, is defined by:

Iαβ = iδȦBζ Ȧ
[αξ

B
β] (1.26)

The relations (1.25) further show that Minkowski bases are compatible with the product of
complex and chiral structure, which is represented by i. This means that the imaginary units
in complex vectors and in spinors refer to different complex structures. This circumstance
may be accounted for by introducing a ‘bicomplex formalism’, where the chiral structure
is expressed in terms of a chiral unit j with j 2 = 1. In this formalism4 the imaginary unit
in complex vectors is ij and Dirac spinors take the form of ‘bicomplex’ two-component
spinors with chiral projectors 1

2 (1 ± j).
The transformation from a spinor basis to a Minkowski basis is a quantum basis trans-

formation, since the spinor tetrad fields have vanishing ground state expectation values as a
consequence of Lorentz invariance

〈ξα
A〉0 = 0, 〈ζ α

A〉0 = 0 (1.27)

and are further supposed to have large quantum fluctuations. This has characteristic conse-
quences concerning the nature of fields as seen by a classical observer and explains why

4The bicomplex formalism will not be used in this paper.
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spinor fields on spacetime do not appear as sections of the tangent bundle but seem to be
related to the latter only via the Clifford bundle. A classical observer is related to a local iner-
tial system in its neighborhood, and one may introduce a Minkowski basis closely adapted to
the approximate inertial coordinates. From the point of view of such an observer a section of
the tangent bundle of the Dirac manifold appears as a tangent vector field, if its components
with respect to the adapted Minkowski basis behave classically with small fluctuations. On
the other hand, a section with slowly varying spinor basis components, describing e.g. the
wavefunction of an electron in an atom, according to (1.24) and (1.27) has Minkowski basis
components with vanishing expectation values and large quantum fluctuations and will not
appear as a tangent vector field from the point of view of the classical observer.

The spinor Einstein equation may be transformed to Minkowski bases, where it decom-
poses into electromagnetic and gravitational Einstein equations:

Fαβ = 1

2
(Dγ Jδ)(η

γ [αηδ
β] + I γ [αI δ

β]) + 1

4
μ2Re Iαβ + 1

4
σIαβ

(1.28)

Gαβ = − i

2
(Dγ Tδ)(η

γ
αη

δ
β + I γ

αI
δ
β) + 1

4
μ2(I Ī + η)αβ

G denotes the Einstein tensor of the Dirac connection while the complex electromagnetic
field F combines the U(1) electromagnetic field F and the D(1) axial field ˜F as its real and
imaginary part respectively. The current vector J , the torsion vector T and the scalars μ and
σ on the right hand sides of these equations are defined in terms of the fundamental spinor
field as follows:

Jα = i

2
μ̄−1�̄γα�, Tα = i

2
μ̄−1�̄γ5γα�, μ2 = χ+ϕ, iσ = Dr

AϕA (1.29)

The Einstein equations involve only covariant derivatives Dα in the directions of classical
basis vectors, since derivatives in axial basis vector directions may be eliminated as a con-
sequence of the chiral Kähler condition.

Besides the Dirac connection D, which has non-vanishing torsion, the Einstein connec-
tion ∇ is introduced, which is obtained from removing the torsion from the Dirac connec-
tion. This connection becomes equal to the Levi-Civita connection of the Lorentz metric on
spacetime in an approximation valid in the vicinity of the ground state and thus describes
the gravitational field. Written in terms of the Einstein connection (1.28) takes the form

Fαβ = 1

2
∇[αJβ] + i

4
εαβ

γ δ∇γ Jδ + 1

4
μ2Re Iαβ

(1.30)

Gαβ = 1

2
μ̄−1[�̄↔∇(αγβ)�] + TαTβ − 1

4
μ2(I Ī )αβ − 1

2
(σ + μ2)ηαβ + {˜A, Im�,∂μ}

where G denotes the Einstein tensor of ∇ . The Dirac derivative of the torsion vector on the
right hand side of the gravitational Einstein equation has been reexpressed in terms of Ein-
stein derivatives of the fundamental spinor field. The curly brackets indicate terms involving
the axial vector potential ˜A and the imaginary part of the Einstein connection coefficients
�, which arise from covariant derivatives of the Dirac matrices, as well as terms involving
derivatives of the scalar field μ. In the vicinity of the ground state these terms vanish and
the Dirac matrices become covariantly constant with respect to the Einstein connection.

One may further derive complex Maxwell equations. While the homogeneous equation
immediately follows from the Bianchi identity, the inhomogeneous equation is obtained
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from taking the covariant divergence of the electromagnetic Einstein equation and simplify-
ing the result with help of the Bianchi identity:

∇β F αβ = −1

4
μ2J α + 1

4
Iαβ∂βμ2, ∇β F ∗αβ = 0 (1.31)

Finally, the fundamental spinor field satisfies an identity independent of the dynamical
spinor Einstein equation, which takes the form of a generalized non-linear Dirac equation
and is called the Dirac identity:

γ α∇α� + 1

4
[(Im + iγ5Re)Tα]γ α� = {˜A, Im�,∂μ} (1.32)

Again, the curly brackets indicate terms, which vanish in the vicinity of the ground state.
The first terms on the right hand sides of the gravitational Einstein equation (1.30) and the

inhomogeneous Maxwell equation (1.31) take the form of the Belinfante energy-momentum
tensor and current density respectively of a Dirac spinor field, but multiplied with a scalar
field instead of a constant. This motivates the assumption that the invariant square of the
fundamental spinor field have a non-vanishing ground state expectation value:

〈μ2〉0 = μ2
0 > 0 ⇔ 〈�̄�〉0 = 2μ2

0, 〈�̄γ5�〉0 = 0 (1.33)

The ground state is further required to break D(1)-gauge symmetry, which is accomplished
by the assumption of a non-vanishing ground state expectation value for products of right or
left spinor fields with dyad fields as follows:

〈ϕAϕ+
B EC

r MEM
l D〉0 = 1

2
μ2

0ε
AC
r εl

BD, 〈χAχ+
B EC

l MEM
r D〉0 = 1

2
μ2

0ε
AC
l εr

BD (1.34)

Since the chiral coordinate indices on the right and left dyad fields in these expressions
refer to the right and left manifold respectively, their contraction in products of dyad fields
breakes the chiral symmetry of independent coordinate transformations on the right and
left manifold. The ground state thus distinguishes a class of coordinate systems, which are
compatible with (1.34). These may further be used to define a preferred four-dimensional
submanifold S by the condition

zM
r |S = zM

l |S = zM (1.35)

which is required to hold for chiral coordinates compatible with (1.34) and which is left
invariant under the unbroken symmetry of joint coordinate transformations on the right and
left manifold. This submanifold is identified with spacetime.

In order to investigate the implications of the assumptions (1.33) and (1.34) systemat-
ically, one might use non-linear realizations of the broken symmetries [5, 6]. Instead, a
very simple approximation is used here, which consists in replacing the expressions on the
left hand sides of (1.33) and (1.34) with their ground state expectation values and is called
the vacuum approximation. Since μ2

0 will be seen to be of Planck order, fields at ordinary
energies may be considered as small excitations above the ground state, and the vacuum
approximation should be appropriate for their description.

The D(1)-symmetry breaking of the ground state causes a decomposition of the tangent
spaces into classical and axial vectors, which is invariant under the unbroken gauge group
of Lorentz and electromagnetic phase transformations. In the vacuum approximation the
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spaces of classical vectors become equal to the tangent spaces of spacetime, which may be
seen as follows. In general, the commutators of classical basis vectors eα are given by

[eα, eβ ] = Re cγ [αβ]eγ − Im cγ [αβ]ẽγ (1.36)

where ẽα denotes axial basis vectors. In the vacuum approximation the structure functions
become real

Im cγ
βα

◦=0 (1.37)

where the symbol
◦= denotes equality within the vacuum approximation. This means that

the spaces of classical vectors become integrable, i.e. they constitute the tangent spaces
of a submanifold. This submanifold is spacetime, as may be seen from considering the
derivatives ∂α in the directions of classical basis vectors, which take the approximate form

∂α
◦=Re[ξM

α (∂r
M + ∂l

M)] (1.38)

where ∂r
M and ∂l

M denote derivatives with respect to the right and left coordinates zM
r and zM

l .
The sum of these derivatives applied to a function on spacetime is equal to the derivative
with respect to the joint coordinate zM , i.e. ∂α is a tangent derivative on S .

Since the inner product in the tangent bundle takes Minkowski form on classical basis
vectors, spacetime becomes equipped with a Lorentz metric, with respect to which the basis
vectors eα are orthonormal. As a consequence of (1.37) the connection coefficients � also
become real

�αβγ = 1

2
(cγ [αβ] + cβ[αγ ] − cα[βγ ]) ⇒ Im�α

βγ
◦=0 (1.39)

and the Einstein connection is identified with the Levi-Civita connection on spacetime.
In order to compare the equations of spinor relativity in the vacuum approximation with

the usual Einstein and Maxwell equations on spacetime, the dimensionless fields of spinor
relativity must be equipped with their physical dimensions by multiplying them with suitable
powers of a scale λ. The values of μ0 and λ are then determined by the condition that
the factors multiplying the Dirac current in the inhomogeneous Maxwell equation and the
Belinfante energy-momentum tensor in the gravitational Einstein equation take the values
4πα and 8πλ2

P respectively, where α is the fine structure constant and λP the Planck length.
This condition is satisfied if μ0 and λ are chosen as follows:

1

2
〈�̄�〉0 = μ2

0 = 1

4π

√
αλ−3

P , λ = 16π
√

αλP (1.40)

The first of these relations may be interpreted as the density of fermion-antifermion pairs in
the ground state condensate.

Applying the vacuum approximation to the Maxwell equations (1.31) one obtains sepa-
rate equations for the electromagnetic and axial fields:

∇βF αβ ◦= − 4παjα, ∇βF ∗αβ ◦=0; ∇β
˜Fαβ ◦=0, ∇β

˜F ∗αβ ◦=0 (1.41)

The electromagnetic field is generated by the Dirac current

jα = i�̄γ α� (1.42)
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while the axial field is source-free. This does however not mean that the axial field com-
pletely vanishes, as shown by the electromagnetic Einstein equation, which in the vacuum
approximation takes the form:

Fαβ
◦=iπ

√
αλP �̄[γα, γβ ]� + 2πλ2

P ∇[αjβ], ˜Fαβ
◦=πλ2

P εαβ
γ δ∇γ jδ (1.43)

The terms arising from the rotation of the current are suppressed by a factor of λ2
P and the

axial field is thus very small. The main part of the electromagnetic field F is given by the
first term on the right hand side of (1.43), which is of the form (1.11) and may be interpreted
as describing the polarization of the fermion-antifermion pairs, which constitute the ground
state condensate.

Neglecting the contribution from the rotation of the current, one obtains a simple expres-
sion for the energy-momentum tensor of the electromagnetic field from (1.43):

T em
αβ = Fαγ Fβ

γ − 1

4
ηαβFγ δF

γ δ ◦= − 1

2
α2λ−4

P (I Ī )αβ (1.44)

This shows that the third term on the right hand side of the gravitational Einstein equation
(1.30) becomes proportional to the energy-momentum tensor of the electromagnetic field in
the vacuum approximation and is moreover multiplied with the correct factor5:

Gαβ
◦=8πλ2

P

{

1

2
�̄

↔∇(αγβ)� − 2πλ2
P (�̄γ5γα�)(�̄γ5γβ�) + (4πα)−1T em

αβ

}

(1.45)

The terms in curly brackets on the right hand side of (1.30) as well as the fourth term
involving the scalar fields σ and μ vanish in the vacuum approximation. The source of the
gravitational field becomes real as consistency with (1.39) requires.

The vacuum approximation of the Dirac identity (1.32) yields a generalized trilinear
Dirac equation:

γ α∇α� + πλ2
P (�̄γ α�)γα�

◦=0 (1.46)

An equation of this type has been used by Heisenberg in his unified field theory [1] and also
by Nambu and Jona-Lasinio in their work on chiral symmetry breaking [7].

Since the constant which appears in (1.46) is also of Planck order, the question arises,
how the mass scale of ordinary particles may enter the theory. This question is related to an
other problem of spinor relativity: In the classical theory spinors are identified with deriva-
tives on a manifold and thus commute. In a quantized version of the theory one would like to
replace the classical derivatives with anticommuting operators. This means that spinor rela-
tivity should not be quantized as a field theory on the Dirac manifold, but one should try to
replace this manifold with a suitable non-commutative space, based on a fermionic quantum
algebra of ‘elementary events’. Such an approach also opens the possibility of introducing
a fundamental length into the definition of the quantum derivative operators, providing a
second length scale besides the Planck scale of the ground state expectation values.

2 Hermitian Manifolds

In this chapter the definitions of complex and hermitian manifolds as well as of connections
on these manifolds are shortly reviewed in a way suitable for generalization to Dirac man-
ifolds in the next chapter. As a particularly simple and natural connection on a hermitian

5The electromagnetic field is normalized such that no coupling constant appears in the covariant derivative.
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manifold the canonical connection [3, 4] is introduced and its curvature and torsion are in-
vestigated. The emphasis in this and the following chapters is entirely on local properties
of the connection, which in analogy to general relativity is considered as a physical field.
Global properties of the manifolds are not taken into account here; in particular, one may
always assume the manifolds to have trivial topology.

2.1 Complex Manifolds

A vector space V ∼= R
2n is said to have a complex structure, if there exists an automorphism

I such that:

I 2 = −12n (2.1)

The subalgebra of the endomorphisms of V which leave this complex structure invariant,
i.e. which commute with I , is isomorphic to the algebra of n × n-matrices with complex
elements:

AL(Cn) ∼= {K ∈ AL(R2n) | [I,K] = 0} (2.2)

Since I commutes with all elements of AL(Cn), it is represented on C
n by a matrix ±i1n

proportional to the unit matrix. The two possibilities to choose the sign in this matrix cor-
respond to two vector spaces W , W̄ ∼= C

n into which C ⊗ V decomposes, with I given
by:

W : I = +i1n, W̄ : I = −i1n (2.3)

Complex conjugation maps these spaces bijectively onto each other. The space V ∗
C

= C⊗V ∗
of complex valued R-linear forms over V decomposes into the direct sum V ∗

C
= W ∗ ⊕ W̄ ∗

of the dual spaces of W and W̄ .
A complex manifold M of dimension n is a real 2n-dimensional manifold together with

a smooth complex structure in its tangent bundle V (M), which is further required to satisfy
the integrability condition

I ν
ρ∂[σ Iμ

ν] − I ν
σ ∂[ρIμ

ν] = 0 (2.4)

where the indices refer to arbitrary real coordinates on the manifold. This integrability con-
dition allows to introduce complex coordinates {zM}M∈{1...n} such that the complex bun-
dles W(M) and W̄ (M) associated with V (M) are spanned by the bases {∂M}M∈{1...n} and
{∂Ṁ}Ṁ∈{1...n} respectively, where ∂M denotes partial derivative with respect to the coordinate

zM and ∂Ṁ partial derivative with respect to the complex conjugate coordinate zṀ .
The bundle V ∗

C
(M) of complex-valued 1-forms on the manifold decomposes into the

sum of the bundles W ∗(M) and W̄ ∗(M), the sections of which are called forms of type
(1,0) and of type (0,1) respectively. Extending this decomposition to the antisymmetric
tensor products

∧r
V ∗

C
(M), an r-form on a complex manifold is the sum of forms of type

(p, q) with p + q = r . The exterior derivative dα of a form α of type (p, q) is the sum
of a form ∂α of type (p + 1, q) and a form ∂̄α of type (p, q + 1), where ∂ and ∂̄ are the
holomorphic and antiholomorphic differential respectively:

∂ = a+(dzM)∂M, ∂̄ = a+(dzṀ)∂Ṁ ; d = ∂ + ∂̄, ∂2 = ∂̄2 = {∂, ∂̄} = 0 (2.5)

a+(β) with β ∈ V ∗
C
(M) denotes an operator, which acts on differential forms by exterior

multiplication with its argument, a+(β)α := β ∧ α.
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On a complex manifold the structure preserving coordinate transformations are those,
where (locally) the new coordinates are holomorphic functions of the old coordinates. The
basis transformations in the tangent bundle induced by holomorphic coordinate transforma-
tions leave W(M) and W̄ (M) invariant.

2.2 Connections on a Complex Manifold

A connection ∇ in the tangent bundle of a complex manifold is a C-linear map satisfying:

∇ : W(M) → V ∗
C
(M) ⊗ W(M)

(2.6)
∇(f ψ) = df ⊗ ψ + f ∇ψ; ψ ∈ W(M),f ∈ C(M)

This definition is extended from W(M) to the associated bundles W̄ (M), W ∗(M) and
W̄ ∗(M) by the requirements of reality and of compatibility with index contraction. The
Leibnitz rule then allows further extension of the connection to arbitrary tensor products of
the tangent and cotangent bundles.

A connection is completely determined by its connection matrix 	, which is a matrix of
1-forms defined by the action of ∇ on a basis of the tangent bundle

∇eA = eB	B
A, ∇ωA = −	A

BωB, ∇eȦ = eḂ	̄Ḃ
Ȧ, ∇ωȦ = −	̄Ȧ

ḂωḂ (2.7)

where {eA}A∈{1...n} denotes a basis of W(M) and {ωA} the basis of W ∗(M) dual to {eA};
the corresponding bases {eȦ} and {ωȦ} of W̄ (M) and W̄ ∗(M) respectively are obtained by
complex conjugation of the former bases.

The defining properties of a connection require an inhomogeneous transformation be-
haviour of the connection matrix under basis transformations eA′ = eBK−1B

A′ in the tangent
bundle:

	A′
B ′ = KA′

C	C
DK−1D

B ′ + KA′
CdK−1C

B ′ (2.8)

The curvature matrix � of the connection is defined by:

�A
B = d	A

B + 	A
C ∧ 	C

B (2.9)

It is a matrix of 2-forms which transforms homogeneously under basis transformations.
Exterior derivation of (2.9) yields the first Bianchi identity:

d�A
B + 	A

C ∧ �C
B − �A

C ∧ 	C
B = 0 (2.10)

The torsion form τ of the connection is defined as follows:

τA = dωA + 	A
B ∧ ωB (2.11)

It is a vector of 2-forms, which transforms homogeneously under basis transformations.
Exterior derivation of (2.11) yields the second Bianchi identity:

dτA + 	A
B ∧ τB = �A

B ∧ ωB (2.12)
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2.3 Canonical Connection

A hermitian manifold is a complex manifold equipped with a symmetric bilinear product
in its tangent bundle, which takes non-zero values between sections of W(M) and W̄ (M)

only:

(eȦ, eB) = (eB, eȦ) = hȦB, (eA, eB) = (eȦ, eḂ) = 0; h+
ȦB

= hȦB (2.13)

The matrix hȦB is called the hermitian metric and gives rise to a real 2-form of type (1,1),
which is called the Kähler form:

ĥ = ihṀNdzṀ ∧ dzN (2.14)

On a hermitian manifold a particularly simple connection may be defined in terms of the
hermitian metric, which is called the canonical connection. The connection matrix of the
canonical connection is a matrix of forms of type (1,0) given by

	M
N = hMṠ∂hṠN (2.15)

where the inverse of the hermitian metric is denoted with upper indices. In (2.15) indices
from the middle of the alphabet have been used in order to indicate that this expression
for the connection matrix is valid in a coordinate basis (more general a holomorphic basis)
only. As may be seen from (2.8) the canonical connection matrix retains its form (2.15)
under a basis transformation in the tangent bundle only, if the transformation matrix satisfies
∂̄K = ∂K̄ = 0, as is the case for holomorphic coordinate transformations. In a general6 basis
the connection matrix takes the form

	A
B = EA

M	M
NEN

B + EA
MdEM

B (2.16)

where EA
M denotes the transformation matrix from a coordinate basis to a general basis in

W(M) and EM
A its inverse. Since in general ∂̄E is non-zero, the connection matrix acquires

a (0,1)-type part in non-holomorphic bases.
The canonical connection could alternatively be defined to be the unique connection

satisfying the following two requirements:
∇ is compatible with the hermitian metric:

d(eȦ, eB) = (∇eȦ, eB) + (eȦ,∇eB) ⇔ dhȦB = hȦC	C
B + 	̄Ċ

ȦhĊB (2.17)

	M
N is a matrix of 1-forms of type (1,0) for coordinate bases.

An important class of non-holomorphic bases are the unitary bases, which are defined
by the requirement that the hermitian metric be equal to the unit matrix:

ĒṀ
ȦhṀNEN

B = δȦB (2.18)

As indicated by their name, the group of transformations, which transform unitary bases
into each other, is the unitary group:

U(n) = {K ∈ GL(Cn)|K+K = 1n} (2.19)

6A ‘general basis’ in the tangent bundle is not completely arbitrary, since it is required to be compatible with
the complex structure.
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In a unitary basis the connection matrix (with first index lowered with the metric) is antiher-
mitian, as follows from the compatibility of the connection with the metric (2.17):

	+
ȦB

= −	ȦB (2.20)

2.4 Curvature and Torsion of the Canonical Connection

The curvature matrix of the canonical connection is a matrix of 2-forms of type (1,1),
since the (2,0)-type terms on the right hand side of (2.9) vanish identically, as may be seen
explicitly using a coordinate basis:

�M
N = ∂̄	M

N, ∂	M
N + 	M

S ∧ 	S
N = 0 (2.21)

As a consequence of the compatibility of the connection with the metric the curvature matrix
is antihermitian:

�+
ȦB

= −�ȦB (2.22)

This may also be seen from its expression in terms of the hermitian metric:

�ṀN = hṀS�
S

N = ∂̄∂hṀN − (∂̄hṀS) ∧ hSṘ∂hṘN (2.23)

An expansion of the curvature 2-forms in terms of a basis in the cotangent bundle defines
the curvature tensor:

�A
B = RA

BĊD ωĊ ∧ ωD (2.24)

As a consequence of (2.22) the curvature tensor satisfies the following symmetry property:

RȦBĊD = R̄BȦDĊ (2.25)

In contrast to the Riemann tensor in general relativity, which may be contracted in a unique
way (up to sign), yielding the Ricci tensor and the curvature scalar, there are several pos-
sibilities of contracting the curvature tensor of the canonical connection; one obtains four
hermitian Ricci type tensors and two real curvature scalars:

R
(1)

ȦB
= 1

2
(RC

BȦC + RȦC
C

B), ρȦB = RC
CȦB, R = RB

(1)B

(2.26)

R
(2)

ȦB
= i

2
(RC

BȦC − RȦC
C

B), ρ̃ȦB = RȦB
C

C, ρ = ρB
B

In a coordinate basis the expression (2.11) for the torsion form simplifies

τM = 	M
N ∧ dzN (2.27)

which shows that the torsion form of the canonical connection is a vector of 2-forms of type
(2,0). An expansion of these forms in terms of a basis in the cotangent bundle defines the
torsion tensor:

τA = 1

2
T A

BC ωB ∧ ωC (2.28)
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A special class of hermitian manifolds are the Kähler manifolds. Their defining prop-
erty is a closed Kähler form, which is equivalent to a vanishing torsion of the canonical
connection:

dĥ = Im(TȦBCωȦ ∧ ωB ∧ ωC) = 0 (2.29)

On a Kähler manifold the canonical connection is equal to the Levi-Civita connection of the
underlying riemannian manifold.

In the special case of a hermitian manifold of dimension n = 2 there is a linear relation
between the Ricci type tensors

2R
(1)

ȦB
− ρȦB − ρ̃ȦB + (ρ − R)hȦB = 0 (2.30)

and the torsion may be entirely expressed in terms of the contracted torsion tensor:

T A
BC = δA

BTC − δA
CTB, TA = T B

BA (2.31)

The identity (2.30) may be derived with help of an expansion of the curvature and Ricci type
tensors in terms of Pauli and unit matrices,7 while (2.31) is verified immediately taking into
account that in two dimensions the torsion tensor has only two independent components as
a consequence of the antisymmetry of its last index pair.

3 Dirac Manifolds

The Dirac manifolds considered in this chapter are complex manifolds of dimension 2n,
which in addition carry a ‘chiral structure’, which decomposes them into a product of two
manifolds of dimension n, which are called the right and left manifold. The Dirac mani-
folds are further equipped with a Dirac metric, which is a hermitian metric satisfying certain
conditions with respect to the chiral structure. As a consequence of these conditions, the
canonical connection derived from the Dirac metric effectively reduces to a pair of connec-
tions acting on the right and left manifold respectively.

3.1 Chiral Manifolds

A vector space V ∼= R
4n with complex structure I is said to have a chiral structure, if there

exists an automorphism J such that:

J 2 = 14n, [I, J ] = 0, TrJ = 0 (3.1)

7Using a unitary basis, an expansion of the curvature tensor in terms of Pauli and unit matrices takes the form

RȦBĊD = 1

4
[ρδȦBδĊD + rkδȦBσk

ĊD
+ r̃kσ k

ȦB
δĊD + rmnσm

ȦB
σn
ĊD

]
where the coefficients are real as a consequence of (2.25). Contraction with the metric then yields the follow-
ing expressions for the Ricci type tensors from which the identity (2.30) follows immediately:

ρȦB = 1

2
[ρδȦB + rkσ k

ȦB
], ρ̃ȦB = 1

2
[ρδȦB + r̃kσ k

ȦB
],

R
(1)

ȦB
= 1

4
[(ρ + rkk)δȦB + (rk + r̃k)σ k

ȦB
], R

(2)

ȦB
= 1

4
εkmnrmnσk

ȦB
.
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Since J commutes with the complex structure, it leaves the complex spaces W and W̄ as-
sociated to V invariant. As a consequence of its vanishing trace, J has equal numbers of
eigenvalues ±1. Therefore W and W̄ decompose into isomorphic subspaces

W = Wr ⊕ Wl, W̄ = W̄r ⊕ W̄l (3.2)

where the right spaces Wr and W̄r are eigenspaces of J for eigenvalue +1 and the left spaces
Wl and W̄l are eigenspaces of J for eigenvalue −1.

A chiral manifold Mch of dimension n is a complex 2n-dimensional manifold together
with a smooth chiral structure in its tangent bundle, which is further required to satisfy the
integrability condition

JQ
R∂[SJM

Q] − JQ
S∂[RJM

Q] = 0, ∂ṘJM
S − JQ

S∂ṘJM
Q = 0 (3.3)

where the indices refer to arbitrary complex coordinates compatible with I . The integrability
condition allows to introduce complex coordinates {zM

r , zM
l }M∈{1...n} such that the right and

left subbundles W(Mr) and W(Ml) into which the chiral structure decomposes W(Mch) are
spanned by the bases {∂r

M}M∈{1...n} and {∂l
M}M∈{1...n} respectively, where ∂i

M with i ∈ {r, l}
denotes partial derivative with respect to the coordinate zM

i .
The sections of the right and left cotangent bundles W ∗(Mr) and W ∗(Ml) are called

forms of type (1r ,0) and (1l ,0) respectively, while the sections of W̄ ∗(Mr) and W̄ ∗(Ml) are
forms of type (0,1r ) and (0,1l ). The holomorphic and antiholomorphic differentials also
decompose into right and left parts:

∂i = a+(dzM
i )∂i

M, ∂̄ i = a+(dzṀ
i )∂i

Ṁ
; ∂ = ∂r + ∂l, ∂̄ = ∂̄ r + ∂̄ l (3.4)

In the following the sum of subbundles which are related to each other by complex conju-
gation and chiral reflection will be important:

U(Mch) = W(Mr) ⊕ W̄ (Ml), Ū(Mch) = W(Ml) ⊕ W̄ (Mr) (3.5)

The sections of the dual bundles U ∗(Mch) and Ū ∗(Mch) are called chiral forms of type
(1,0)ch and (0,1)ch respectively. The corresponding chiral and antichiral differentials are
defined by:

dch = ∂r + ∂̄ l , d̄ch = ∂l + ∂̄ r; d = dch + d̄ch (3.6)

The structure preserving coordinate transformations on a chiral manifold are those holo-
morphic transformations, which do not mix the two sets of coordinates {zM

r } and {zM
l }. These

transformations are called chiral coordinate transformations. Thus, a chiral manifold is the
product of two diffeomorphic complex manifolds Mr and Ml , which are called the right and
left manifold respectively. Since chiral coordinate transformations leave Mr and Ml sepa-
rately invariant, it is convenient to imagine the two manifolds forming a ‘double layer’ with
functions on the chiral manifold depending on arbitrary pairs of points pr and pl on Mr and
Ml respectively.

3.2 Connections on a Chiral Manifold

A connection D in the tangent bundle of a chiral manifold is a C-linear map satisfying:

D : W(Mi) → V ∗
C
(Mch) ⊗ W(Mi)

(3.7)
D(f ψi) = df ⊗ ψi + f Dψi; ψi ∈ W(Mi), f ∈ C(Mch), i ∈ {r, l}
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This definition is extended from W(Mi) to the associated bundles W̄ (Mi), W ∗(Mi) and
W̄ ∗(Mi) by the requirements of reality and of compatibility with index contraction. The
Leibnitz rule then allows further extension of the connection to arbitrary tensor products of
the tangent and cotangent bundles.

A connection is completely determined by its connection matrices 	r and 	l which are
matrices of 1-forms defined by the action of D on a basis of the tangent bundle

Dei
A = ei

B	B
i A, DωA

i = −	A
i BωB

i , Dei

Ȧ
= ei

Ḃ
	̄Ḃ

i Ȧ, DωȦ
i = −	̄Ȧ

i ḂωḂ
i (3.8)

where {ei
A}A∈{1...n} denotes a basis of W(Mi) and {ωA

i } the basis of W ∗(Mi) dual to {ei
A};

the corresponding bases {ei

Ȧ
} of W̄ (Mi) and {ωȦ

i } of W̄ ∗(Mi) are obtained by complex
conjugation of the former bases.

The connection matrices 	i transform inhomogeneously under basis transformations in
the tangent bundle, ei

A′ = ei
BK−1B

i A′ :

	A′
i B ′ = KA′

i C	C
i DK−1D

i B ′ + KA′
i CdK−1C

i B ′ (3.9)

The curvature matrices �i of the connection are defined by:

�A
i B = d	A

i B + 	A
i C ∧ 	C

i B (3.10)

They are matrices of 2-forms which transform homogeneously under basis transformations.
Exterior derivation of (3.10) yields the first Bianchi identities:

d�A
i B + 	A

i C ∧ �C
i B − �A

i C ∧ 	C
i B = 0 (3.11)

The right and left torsion forms τi of the connection are defined as follows:

τA
i = dωA

i + 	A
i B ∧ ωB

i (3.12)

They are vectors of 2-forms, which transform homogeneously under basis transformations.
Exterior derivation of (3.12) yields the second Bianchi identities:

dτA
i + 	A

i B ∧ τB
i = �A

i B ∧ ωB
i (3.13)

3.3 Dirac Connection

A Dirac manifold is a chiral manifold equipped with a symmetric bilinear product in its
tangent bundle, which takes non-zero values only between sections of W(Mr) and W̄ (Ml)

as well as between sections of W(Ml) and W̄ (Mr):

(

(er

Ȧ
, er

B) (er

Ȧ
, el

B)

(el

Ȧ
, er

B) (el

Ȧ
, el

B)

)

=
(

0 g+
ȦB

gȦB 0

)

,

(3.14)
(ei

B, ei′
Ȧ
) = (ei′

Ȧ
, ei

B), (ei
A, ei′

B) = (ei

Ȧ
, ei′

Ḃ
) = 0

The matrix gȦB is called the Dirac metric and g+
ȦB

denotes its hermitian adjoint. The Dirac
metric gives rise to a 2-form of type (1r ,1l ) which is called the chiral Kähler form:

ĝ = igṀNdzṀ
l ∧ dzN

r (3.15)
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The chiral Kähler form of a Dirac manifold is further required to satisfy the chiral Kähler
condition, which forces the components of the metric to be analytic functions of zM

r and zṀ
l :

d̄chĝ = 0 ⇔ ∂l
SgṀN = 0, ∂r

Ṡ
gṀN = 0 (3.16)

Since ultimately only the equations on spacetime are of interest, analyticity is required only
on this four-dimensional submanifold, allowing for singularities in other regions of the Dirac
manifold.

The Dirac metric may be considered as a special case of a hermitian metric. As a conse-
quence of the vanishing diagonal blocks, the corresponding canonical connection, which is
called the Dirac connection, leaves the spaces W(Mi) invariant, as required by the definition
(3.7) of a connection on a chiral manifold. The connection matrices of the Dirac connection
are given by

	M
r N = gMṠ∂gṠN , 	M

l N = g+MṠ∂g+
ṠN

(3.17)

where indices from the middle of the alphabet refer to a chiral coordinate basis. As a con-
sequence of the chiral Kähler condition the differentials ∂l and ∂r annihilate the metric and
its adjoint respectively, whence 	r and 	l are matrices of forms of type (1r ,0) and (1l ,0)

respectively. Under chiral coordinate transformations the connection matrices retain their
form (3.17), while in a general8 basis they are given by

	A
i B = EA

i M	M
i NEN

i B + EA
i MdEM

i B (3.18)

where EA
i M denotes the transformation matrix from a coordinate basis to a general basis in

W(Mi) and EM
i A its inverse.

The Dirac connection could alternatively be defined to be the unique connection satisfy-
ing the following two requirements:

D is compatible with the Dirac metric:

d(el

Ȧ
, er

B) = (Del

Ȧ
, er

B) + (el

Ȧ
,Der

B) ⇔ dgȦB = gȦC	C
r B + 	̄Ċ

l ȦgĊB (3.19)

	M
r N and 	M

l N are matrices of 1-forms of type (1,0) for chiral coordinate bases.
An important class of non-holomorphic bases are the spinor bases which are defined by

the requirement that the Dirac metric be equal to the unit matrix:

ĒṀ
l ȦgṀNEN

r B = δȦB (3.20)

The transformation matrices Er and El from a coordinate basis to a spinor basis are called
right and left dyad fields (anticipating that n will be set equal to two in the next chapter),
in analogy to the tetrad fields of general relativity. They are further required to satisfy the
chirality conditions

d̄chE
A
r M = 0, dchE

A
l M = 0 (3.21)

which are compatible with the chiral Kähler condition on the Dirac metric. With this restric-
tion on the dyad fields, comparison with (3.18) shows that 	r in a spinor basis is a matrix
of chiral forms of type (1,0)ch, while the left connection matrix 	l consists of chiral forms

8A ‘general basis’ in the tangent bundle of a chiral manifold is not completely arbitrary since it is required to
be compatible with the complex and chiral structures.
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of type (0,1)ch. The group Gn of basis transformations, which transform spinor bases into
each other is isomorphic to GL(Cn):

Gn = {(Kr,Kl) ∈ GL(Cn) × GL(Cn) | K+
l Kr = 1n} ∼= GL(Cn) (3.22)

In a spinor basis the right and left connection matrices (with first index lowered with the
Dirac metric and its adjoint respectively), are related by hermitian conjugation, as follows
from the compatibility of the connection with the metric (3.19):

	l

ȦB
= −	r+

ȦB
(3.23)

3.4 Curvature and Torsion of the Dirac Connection

The curvature matrices of the Dirac connection are matrices of 2-forms of type (1,1), since
the (2,0)-type terms on the right hand side of (3.10) vanish identically, as may be seen using
a chiral coordinate basis:

�M
i N = ∂̄	M

i N , ∂	M
i N + 	M

i S ∧ 	S
i N = 0 (3.24)

The chiral Kähler condition further restricts �r and �l to be forms of type (1r ,1l ) and
(1l ,1r ) respectively. As a consequence of the compatibility of the connection with the metric
the right and left curvature matrices are related by hermitian conjugation:

�r

ȦB
= −�l+

ȦB
(3.25)

This may also be seen from the expressions of �r and �l in terms of the Dirac metric:

�r

ṀN
= ∂̄∂gṀN − ∂̄gṀR ∧ gRṠ∂gṠN , �l

ṀN
= ∂̄∂g+

ṀN
− ∂̄g+

ṀR
∧ g+RṠ∂g+

ṠN
(3.26)

An expansion of the curvature 2-forms in terms of a basis in the cotangent bundle defines
the right and left Riemann spinors:

�A
r B = RA

r BĊD ωĊ
l ∧ ωD

r , �A
l B = RA

l BĊD ωĊ
r ∧ ωD

l (3.27)

As a consequence of (3.25) they satisfy the following symmetry property:

Rr

ȦBĊD
= R̄l

BȦDĊ
(3.28)

The right Riemann spinor may be contracted using the Dirac metric; one obtains four Ricci
spinors and two curvature scalars:

RȦB = RC
r BȦC, R̃ȦB = Rr

ȦC

C
B, R = RB

B

(3.29)
ρȦB = RC

r CȦB, ρ̃ȦB = Rr

ȦB

C
C, ρ = ρB

B

The index referring to the right manifold has been omitted from the Ricci spinors, since
the corresponding left Ricci spinors, which are obtained by contracting the left Riemann
spinor with the adjoint Dirac metric, may be expressed in terms of adjoints of the right Ricci
spinors as a consequence of (3.28):

RC
l BȦC = R̃+

ȦB
, Rl

ȦC

C
B = R+

ȦB
, RC

l CȦB = ρ+
ȦB

, Rl

ȦB

C
C = ρ̃+

ȦB
(3.30)



Int J Theor Phys (2008) 47: 3341–3390 3361

In a chiral coordinate basis the expressions (3.12) for the right and left torsion forms
simplify

τM
i = 	M

i N ∧ dzN
i (3.31)

and it is seen that τr and τl are vectors of forms of type (2r ,0) and (2l ,0) respectively. An
expansion of these forms in terms of a basis in the cotangent bundle defines the right and
left torsion spinors:

τA
i = 1

2
T A

i BCωB
i ∧ ωC

i (3.32)

In analogy to the case of a hermitian manifold, on a Dirac manifold of dimension n = 2
there is a linear relation between the Ricci spinors

RȦB + R̃ȦB − ρȦB − ρ̃ȦB + (ρ − R)gȦB = 0 (3.33)

and the torsion may be expressed in terms of the contracted torsion spinors:

T A
i BC = δA

BT i
C − δA

CT i
B, T i

A = T B
i BA (3.34)

4 Minkowski Bases on a Dirac Manifold

Spinor relativity is defined on a Dirac manifold of dimension two. In this case the tangent
spaces carry the structures of Dirac spinor space and the sections of the tangent bundle in a
spinor basis are called spinor fields. A distinguished spinor field, which arises naturally from
the Dirac metric, is provided by the contracted torsion and is called the fundamental spinor
field. Besides its significance as a physical field, the fundamental spinor field also enables
the introduction of Minkowski bases. The sections of the tangent bundle in a Minkowski
basis are called vector fields, since they are acted on by Lorentz transformations in their
defining representation. In this chapter Minkowski bases are introduced and the structures
of the Dirac manifold, in particular the Dirac connection, are expressed in terms of them.

4.1 Dirac Spinors

In case of a Dirac manifold of dimension n = 2 the invariance group G2 of the Dirac metric is
isomorphic to a product of the covering group of the Lorentz group and two abelian factors;
it is called the gauge group of spinor relativity:

G2
∼= GL(C2) = D(1) × U(1) ◦ SL(C2) (4.1)

The sections of the tangent bundle in a spinor basis thus carry a spinor representation of
the Lorentz group and will therefore be called spinor fields. A distinguished spinor field is
present on a Dirac manifold in form of the contracted torsion spinors. Because of its impor-
tance in spinor relativity it is called the fundamental spinor field and the special symbols ϕ

and χ are introduced for its right and left part respectively:

ϕA = iδAḂ T̄ l

Ḃ
, χA = −iδAḂ T̄ r

Ḃ
(4.2)
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As a consequence of (3.21)9 the fundamental spinor field satisfies the chirality conditions:

d̄chϕ
A = 0, dchχ

A = 0 (4.3)

One may introduce a (chiral) Dirac spinor notation, where the sections of W(Ml) ⊕
W(Mr) with respect to a spinor basis are written as four-component spinors with indices
omitted. In this notation the gauge group action on spinor fields takes the form

ψ → KDψ; ψ =
(

φl

φr

)

, KD =
(

Kl 0
0 Kr

)

(4.4)

Kl = exp
1

2
{(iϑ0 − κ0) + (i �ϑ − �κ)�σ }, Kr = K−1+

l

where �σ denotes the Pauli matrices and the parameters κ0, ϑ0, �κ and �ϑ are real. If ϑ0 and
κ0 vanish, the upper and lower part of KD reduce to the left and right Weyl-representation
of SL(C2) respectively, where �ϑ generates rotations and �κ generates boosts. The coordinate
dependence of the parameters is restricted by the chirality conditions (3.21) on the dyad
fields, which force the allowed gauge transformations to satisfy the corresponding condi-
tions d̄chKr = 0 and dchKl = 0.

The product in the tangent bundle of a Dirac manifold induces an indefinite hermitian
product on W(Ml) ⊕ W(Mr), which in Dirac spinor notation takes the form:

ψ+βψ = φ̄Ȧ
r δȦBφB

l + φ̄Ȧ
l δȦBφB

r , β =
(

0 12

12 0

)

(4.5)

Further, the natural projectors Pl and Pr onto the subbundles of W(Ml) ⊕ W(Mr) are given
by:

Pl = 1

2
(1 + γ5), Pr = 1

2
(1 − γ5); γ5 =

(

12 0
0 −12

)

(4.6)

The gauge group of spinor relativity is isomorphic to the group of linear transformations
of Dirac spinors which leave the hermitian product invariant and commute with the chiral
projectors:

G2
∼= {KD ∈ GL(C4) | K+

DβKD = β , [KD, γ5] = 0 } (4.7)

4.2 Dirac and Weyl Matrices

Dirac matrices represent the Clifford algebra of the Lorentz group in Dirac spinor automor-
phisms:

{γ α, γ β} = 2ηαβ; ηαβ =
(−1 0

0 13

)

(4.8)

9This may be seen from the explicit expression of the torsion spinors in terms of the dyad fields

T A
i BC = EA

i M∂i
CEM

i B + δAĖĒḊ

ĩ Ṁ ∂i
CĒṀ

ĩ ĖδḊB − EA
i M∂i

BEM
i C − δAĖĒḊ

ĩ Ṁ ∂i
BĒṀ

ĩ ĖδḊC

where ĩ is the chirality index opposite to i and ∂i
A

denotes partial derivation in the direction of ei
A

.
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In a chiral basis they take the form

γ α = −i

(

0 σα

−σ̂ α 0

)

, σ α = (12, �σ), σ̂ α = (−12, �σ) (4.9)

where σα and σ̂ α are the right and left Weyl matrices respectively. In terms of Weyl matrices
the anticommutation relations of Dirac matrices read:

σ(ασ̂β) = σ̂(ασβ) = ηαβ (4.10)

The action of the gauge group gives rise to real Lorentz transformations of the Dirac matrices
together with D(1)-transformations involving γ5

K−1
D γ αKD = eκ0γ5�α

βγ β (4.11)

where KD is given by (4.4) and �α
β is the Lorentz transformation generated by the anti-

symmetric matrix ωαβ with components:

ωk0 = κk,
1

2
εkmnωmn = ϑk (4.12)

This transformation property of the Dirac matrices may equivalently be expressed in terms
of Weyl matrices:

K−1
l σ αKr = eκ0�α

βσβ, K−1
r σ̂ αKl = e−κ0�α

βσ̂ β (4.13)

Using Dirac matrices the gauge transformation matrices (4.4) may be written in the form:

KD = exp

{

i

2
ϑ014 − 1

2
κ0γ5 + 1

4
ωαβSαβ

}

, Sαβ = 1

2
[γα, γβ ] (4.14)

The Lorentz generators S satisfy the following (anti-)commutation relations with Dirac ma-
trices

1

2
[γα, Sβγ ] = ηαβγγ − ηαγ γβ,

1

2
{γα, Sβγ } = iεαβγ δγ5γ

δ (4.15)

where the sign convention ε0123 = −1 for the totally antisymmetric tensor has been chosen.
They are further selfdual in the following sense:

S∗
αβ = 1

2
Sγ δε

γ δ
αβ = iγ5Sαβ (4.16)

The Weyl matrices satisfy the Fiertz identities

1

2
(σ α)A

B(σ̂α)
C

D = δA
DδC

B

1

2
(σ α)A

B(σα)
C

D = εAC
l εr

DB (4.17)

1

2
(σ̂ α)A

B(σ̂α)
C

D = εAC
r εl

DB

and they are chirally reflected to each other as follows

εl
AC(σα)

C
DεDB

r = (σ̂α)
B

A, εr
AC(σ̂α)

C
DεDB

l = (σα)
B

A (4.18)



3364 Int J Theor Phys (2008) 47: 3341–3390

where εi
AB denotes the antisymmetric matrices with εr

12 = εl
21 = 1 and εAB

i their inverses.

4.3 Spacetime Pauli Matrices

From (4.13) it is seen that products of right and left Weyl matrices are D(1)-invariant. The
antisymmetric part of these products may be expanded in terms of Pauli matrices as follows:

σ[ασ̂β] = σk�̄
k
αβ, σ̂[ασβ] = −σk�

k
αβ (4.19)

The matrices �k
αβ introduced on the right hand sides of these relations are called spacetime

Pauli matrices; they are antisymmetric in their Lorentz indices with components:

�k
l0 = δkl, �k

mn = −iεkmn (4.20)

Their name is justified by their (anti-)commutation relations

{�m,�n}αβ = 2δmnηαβ, [�m,�n]αβ = 2iεkmn�
k
αβ, [�m, �̄n] = 0 (4.21)

which show that the spacetime Pauli matrices and their complex conjugates form two com-
muting sets of generators of the rotation group. Further, the spacetime Pauli matrices are
antiselfdual and their products with complex conjugate spacetime Pauli matrices are sym-
metric and trace-free:

�k∗
αβ = −i�k

αβ; (�m�̄n)[αβ] = 0, (�m�̄n)α
α = 0 (4.22)

Since the spacetime Pauli matrices together with their complex conjugates form a basis for
antisymmetric tensors, the following identity may be derived using (4.21) and (4.22):

1

2
�

δγ

k �k
αβ = ηγ [αηδ

β] + i

2
εγ δ

αβ (4.23)

In products with Weyl matrices it is possible to switch between the two types of Pauli ma-
trices using the relations:

�α
k βσ β = σασk, �α

k β σ̂ β = −σkσ̂
α (4.24)

The Lorentz generators may be expressed in terms of the two types of Pauli matrices as
follows:

Sαβ =
(

σk�̄
k
αβ 0

0 −σk�
k
αβ

)

(4.25)

4.4 Spinor Tetrad Fields

From the fundamental spinor field (4.2) and Weyl matrices the spinor tetrad fields ξ and ζ

are defined as follows

ξA
α = (σ̂αχ)A

√
ϕ+χ

, ζA
α = (σαϕ)A

√
χ+ϕ

; ξα
A = ηαβζ Ḃ

β δȦB, ζ α
A = ηαβξ Ḃ

β δȦB (4.26)

where a dotted spinor index is used to denote the complex conjugate spinor tetrad fields.
They carry a spinor and a vector index and will be used in the next section to associate a
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Minkowski basis to each spinor basis. Under a gauge transformation the spinor tetrad fields
transform according to the relations

ξA
α → e−κ0KA

r BξB
β �−1β

α, ξα
A → eκ0�α

βξ
β

BK−1B
r A

(4.27)
ζA
α → eκ0KA

l BζB
β �−1β

α, ζ α
A → e−κ0�α

βζ
β

B K−1B
l A

as may be seen from (4.13). This shows that the spinor tetrad fields are well suited for
transforming spinor fields, acted on by spinor representations of the Lorentz group, to vector
fields, acted on by real Lorentz transformations.

Contracting Lorentz indices in products of spinor tetrad fields yields the identities

1

2
ξA
γ ξ

γ

B = δA
B,

1

2
ζA
γ ζ

γ

B = δA
B; ξA

γ ζ
γ

Ḃ
= 0, ζA

γ ξ
γ

Ḃ
= 0 (4.28)

as follows from (4.17). Contracting spinor indices in products of spinor tetrad fields one
obtains tensor fields; from the symmetric product the Minkowski metric is recovered, while
the antisymmetric product defines a new D(1)-invariant tensor field I , which is called the
complex spinor structure:

δȦBζ Ȧ
(αξ

B
β) = ηαβ, iδȦBζ Ȧ

[αξ
B
β] = ink�̄

k
αβ = Iαβ; nk = ϕ+σkχ

ϕ+χ
, �n2 = 1 (4.29)

As indicated by this name, the complex structure in the tangent bundle of a Dirac manifold
is represented on vector fields by I . This will be seen in the next section to be a consequence
of the identities

Iα
βξ

β

C = iξα
C, I α

βζ
β

Ċ
= −iζ α

Ċ
; ξC

β Iβ
α = iξC

α , ζ Ċ
β I β

α = −iζ Ċ
α (4.30)

which are derived with help of (4.28). I has the following properties

(I 2)α
β = −ηα

β, I ∗
αβ = iIαβ, [I,�k]αβ = 0, {I, �̄k}αβ = 2inkηαβ (4.31)

the first of which makes it a candidate for a complex structure. It is further possible to
express the totally antisymmetric tensor in terms of the complex spinor structure

i

2
εγ δ

αβ = I γ [αI δ
β] − 1

2
I γ δIαβ (4.32)

as may be verified by contracting (4.32) with �k and �̄k respectively, remembering that
these six matrices constitute a basis for antisymmetric tensors.

4.5 Minkowski Bases

The chiral coordinate and spinor bases in the tangent bundle of a Dirac manifold considered
up to now were compatible with the complex and chiral structures, i.e. the transformation
matrices relating them commute with I and J and thus leave the bundles W(Mi) and their
associated bundles invariant. This is no longer the case for Minkowski bases, which combine
basis vectors from bundles complex conjugate and chirally reflected to each other.
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For a given spinor basis the associated Minkowski basis {Eα}α∈{0...3} of U(Mch) and the
corresponding dual basis {ϑα}α∈{0...3} of U ∗(Mch) are defined as follows:

Eα = 1

2
(ξA

α er
A + ζ Ȧ

α el

Ȧ
), ϑα = ξα

AωA
r + ζ α

Ȧ
ωȦ

l (4.33)

On the complex conjugate bundles Ū (Mch) and Ū ∗(Mch) the complex conjugate Minkowski
bases {Ēα} and {ϑ̄α} respectively are introduced. The inverse basis transformations are ob-
tained with help of the identities (4.28):

er
A = ξα

A Eα, el
A = ζ α

A Ēα; ωA
r = 1

2
ξA
α ϑα, ωA

l = 1

2
ζA
α ϑ̄α (4.34)

The sections of the tangent bundle in a Minkowski basis are called (complex) vector fields.
The product in the tangent bundle of a Dirac manifold takes the form of a symmetric bilinear
product between vector fields given by the Minkowski metric:

(Eα, Eβ) = (Ēα, Ēβ) = 1

2
ηαβ, (Eα, Ēβ) = (Ēα, Eβ) = 0 (4.35)

The factor in front of the Minkowski metric is a consequence of the normalization of the
basis vectors, which has been chosen such that inconvenient factors of

√
2 are avoided later

on. In the following tensor indices are always raised and lowered with the Minkowski metric
without extra factors, as had already been tacitly assumed in the previous sections.

The action of gauge transformations on Minkowski bases is obtained with help of (4.27)

ωA
r → KA

r BωB
r , ωA

l → KA
l BωB

l ⇒
(4.36)

ϑα → �α
β [eκ0ξα

AωA
r + e−κ0ζ α

Ȧ
ωȦ

l ] = �α
β [chκ0η

β
γ − ishκ0I

β
γ ]ϑγ = (�I)α

βϑβ

where (4.30) has been used in the second step. This shows that SL(C2)-transformations
are represented by real Lorentz transformations and U(1)-transformations are represented
trivially, as required for a vector basis. D(1)-transformations are represented by complex
matrices I involving the complex spinor structure. The action of the complex and chiral
structures is given on Minkowski bases by I and −iI respectively, as may be verified with
help of (4.30):

I : ωA
r → iωA

r , ωA
l → iωA

l ⇒ ϑα → i[ξα
AωA

r − ζ α

Ȧ
ωȦ

l ] = Iα
βϑβ

(4.37)
J : ωA

r → ωA
r , ωA

l → −ωA
l ⇒ ϑα → ξα

AωA
r − ζ α

Ȧ
ωȦ

l = −iI α
βϑβ

This shows that Minkowski bases are compatible with the new complex structure ˜I = IJ ,
which is called the complex vector structure and is represented on vectors by i.

Using Minkowski bases, the chiral differential (3.6) takes a particularly simple form
involving the derivatives ∂ch

α in the directions of the basis vectors Eα

dch = a+(ϑα)∂ch
α , ∂ch

α = 1

2
(ξM

α ∂r
M + ζ Ṁ

α ∂l

Ṁ
) (4.38)

where the tetrad fields with coordinate spinor index are given by:

ξM
α = EM

r AξA
α , ζM

α = EM
l AζA

α ; ξα
M = ξα

AEA
r M, ζ α

M = ζ α
AEA

l M (4.39)
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Exterior derivation of the basis forms yields the structure equation

dϑα = −1

2
(Cα

βγ ϑβ ∧ ϑγ + ˜Cα
βγ ϑβ ∧ ϑ̄γ ) (4.40)

with complex structure functions:

Cα
βγ = ξM

β ∂ch
γ ξα

M + ζ Ṁ
β ∂ch

γ ζ α

Ṁ
, ˜Cα

βγ = ξM
β ∂̄ch

γ ξα
M + ζ Ṁ

β ∂̄ch
γ ζ α

Ṁ
(4.41)

As a consequence of the chirality conditions (3.21) the antichiral derivatives in the expres-
sion for ˜C do not act on the dyad fields within the tetrad fields (4.39) and the expression may
be evaluated further as follows:

˜Cα
βγ = ξC

β ∂̄ch
γ ξα

C + ζ Ċ
β ∂̄ch

γ ζ α

Ċ
= (ϕ+χ)−1[(∂̄ch

γ ϕ+)σkχ − ϕ+σk∂̄
ch
γ χ ] �̄α

k β (4.42)

In the second step the relations (4.10) and (4.19) for products of Weyl matrices have been
used as well as (4.29), which may be written more conveniently in the form:

1

2
(ξα

CξC
β + ζ α

Ċ
ζ Ċ
β ) = ηα

β,
i

2
(ξα

CξC
β − ζ α

Ċ
ζ Ċ
β ) = Iα

β (4.43)

(4.42) shows in particular that ˜C is antisymmetric in its first index pair. The structure func-
tions C on the other hand may be expressed in terms of the structure functions of the spinor
basis.10

4.6 Dirac Connection in a Minkowski Basis

The action of the Dirac connection on Minkowski bases

DEα = Eβ	β
α, Dϑα = −	α

βϑβ, DĒα = Ēβ	̄β
α, Dϑ̄α = −	̄α

βϑ̄β (4.44)

is determined by the connection matrix 	α
β , which is derived from the general transforma-

tion behaviour of connection matrices applied to the transformation (4.33) on U(Mch):

2	α
β = ξα

A	A
r BξB

β + ζ α

Ȧ
	̄Ȧ

l Ḃ ζ Ḃ
β + ξα

CdξC
β + ζ α

Ċ
dζ Ċ

β (4.45)

This is equivalent to the requirement that the spinor tetrad fields be covariantly constant:

0 = Dξα
A = dξα

A + 	α
βξ

β

A − ξα
B	B

r A, 0 = Dζ α

Ȧ
= dζ α

Ȧ
+ 	α

βζ
β

Ȧ
− ζ α

Ḃ
	̄Ḃ

l Ȧ (4.46)

In order to simplify the expression (4.45), the connection matrices in a spinor basis are
expanded in terms of Pauli matrices and the unit matrix using the symmetry property (3.23)

	A
r B = −iAδA

B + LkσA
k B, 	A

l B = −iĀδA
B − L̄kσA

k B (4.47)

10With spinor structure functions defined by

dωA
i + cA

i BCωB
i ∧ ωC

i + cA
i BĊωB

i ∧ ωĊ

ĩ
= 0; cA

i BC = EM
i B∂i

CEA
i M, cA

i BĊ = EM
i B∂ĩ

Ċ
EA

i M

where ĩ denotes the chirality index opposite to i, the Minkowski structure functions C take the form:

2Cα
βγ = ξα

A[cA
r BCξC

γ + cA
r BĊζ Ċ

γ ]ξB
β + ζα

Ȧ
[c̄Ȧ

l ḂĊ ζ Ċ
γ + c̄Ȧ

l ḂCξC
γ ]ζ Ḃ

β .
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where A and Lk are chiral 1-forms of type (1,0)ch. A is the complex electromagnetic po-
tential, since it represents the U(1) and D(1) parts of the connection acting on spinor fields.
These expansions are inserted into (4.45), the Pauli matrices are replaced with spacetime
Pauli matrices using (4.24) and the resulting expression is simplified with help of (4.43).
In the last two terms of (4.45) the total differentials may further be replaced with antichiral
differentials as a consequence of the chirality conditions (4.3). The connection matrices in a
Minkowski basis finally take the form:

	α
β = −AIα

β + Lk�α
k β + 1

2
(ξα

C d̄chξ
C
β + ζ α

Ċ
d̄chζ

Ċ
β ) (4.48)

Since A and Lk are chiral forms of type (1,0)ch, their expansion in terms of Minkowski
basis forms does not contain complex conjugate forms:

A = Aαϑ
α, Lk = Lk

αϑ
α (4.49)

The last two terms of (4.48) on the other hand consist of chiral forms of type (0,1)ch and
further comparison with (4.41) shows that they may be expressed in terms of the structure
functions ˜C . The connection matrix may thus be expanded as follows:

	α
β = �α

βγ ϑγ − 1

2
˜Cα

βγ ϑ̄γ , �α
βγ = −Aγ I α

β + Lk
γ �α

k β (4.50)

	αβ is antisymmetric and consequently the Minkowski metric on U(Mch) is covariantly
constant, as required by the compatibility of the connection with the Dirac metric. The com-
patibility of the connection with the complex structure further requires I to be covariantly
constant, which follows from (4.43) and the covariant constancy of the spinor tetrad fields.11

4.7 Curvature and Torsion in a Minkowski Basis

The curvature matrices in a Minkowski basis are obtained from the homogeneous transfor-
mation behaviour of the curvature:12

�α
β = d	α

β + 	α
γ ∧ 	γ

β = 1

2
(ξα

A�A
r BξB

β + ζ α

Ȧ
�̄Ȧ

l Ḃζ Ḃ
β ) (4.51)

11One may also verify this explicitly. Since I commutes with �k , only the C̃ -part of the connection matrix
enters the covariant derivative of I

(DI )αβ = dIα
β + 	α

γ Iγ
β − Iα

γ 	γ
β = d̄chIα

β + 1

2
(ϕ+χ)−1[ϕ+σkd̄chχ − (d̄chϕ+)σkχ][�̄k, I ]αβ

where C̃ has been expressed in its form (4.42) and the chirality condition dchIα
β = 0 has been used. This is

evaluated further using (4.29) and the commutator of spacetime Pauli matrices

(DI )αβ = i(ϕ+χ)−1[d̄ch(ϕ+σkχ) − nkd̄ch(ϕ+χ)]�̄α
k β

− (ϕ+χ)−1εkrsnr [ϕ+σs d̄chχ − (d̄chϕ+)σsχ]�̄α
k β = 0

where the identity iεkmnσA
m BσC

n D = δA
DσC

k B −σA
k DδC

B for Pauli matrices has been used in the last step.
12The curvature matrix in a Minkowski basis may also be obtained from the exterior derivative of (4.48)

�α
β = d	α

β + 	α
γ ∧ 	γ

β

=
[

∂ch
γ �α

βδ + �α
εγ �ε

βδ − 1

2
�α

βε Cε
γ δ

]

ϑγ ∧ ϑδ + [dXα
β + Xα

γ ∧ Xγ
β ]

+ d̄ch[−AIα
β + Lk�α

k β ] − A ∧ [I,X]αβ + Lk ∧ [�k,X]αβ
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In order to simplify this expression, the curvature matrices in a spinor basis are expanded in
terms of Pauli matrices and the unit matrix in analogy to (4.47):

�A
r B = −iF δA

B + QkσA
k B, �A

l B = −iF̄ δA
B − Q̄kσA

k B (4.52)

F is the complex electromagnetic field. Inserting these expansions into (4.51) and simplify-
ing the resulting expression, the curvature matrix in a Minkowski basis takes the form:

�α
β = −F Iα

β + Qk�α
k β (4.53)

Since F and Qk are chiral forms of type (2,0)ch, they involve chiral differentials of the
potential forms A and Lk , while the antichiral differentials of the latter vanish:

F = dchA, Qk = dchL
k + iεkmnL

m ∧ Ln; d̄chA = 0, d̄chL
k = 0 (4.54)

An expansion of F and Qk in a Minkowski basis does not contain complex conjugate basis
forms:

F = 1

2
Fαβϑα ∧ ϑβ, Qk = 1

2
Qk

αβϑα ∧ ϑβ (4.55)

The corresponding expansion of the curvature matrix defines the curvature tensor:

�α
β = 1

2
Rα

βγ δϑ
γ ∧ ϑδ, Rα

βγ δ = −Iα
β Fγ δ + �α

k βQk
γ δ (4.56)

Since it is antisymmetric in both its first and last index pair, there is only one possibility (up
to sign) to contract it, which yields the Dirac-Ricci tensor:

Rαβ = Rγ
αγβ, Rαβ = Iα

γ Fγβ − �k
α

γ Qk
γβ (4.57)

The torsion form transforms homogeneously:

τα = dϑα + 	α
β ∧ ϑβ = ξα

AτA
r + ζ α

Ȧ
τ̄ Ȧ
l (4.58)

Using the relation (3.34) valid on Dirac manifolds of dimension two, the torsion forms in
a spinor basis (3.32) may be expressed in terms of the fundamental spinor field (4.2) as
follows:

τA
r = −iχ+

B ωA
r ∧ ωB

r , τA
l = iϕ+

B ωA
l ∧ ωB

l (4.59)

where Xα
β = − 1

2 C̃α
βγ ϑ̄γ = 1

2 (ξα
C

d̄chξC
β + ζα

Ċ
d̄chζ Ċ

β ). The second term in brackets vanishes:

dchXα
β = 0, d̄chXα

β = −Xα
γ ∧ Xγ

β = 1

2
(d̄chξα

C ∧ d̄chξC
β + d̄chζα

Ċ
∧ d̄chζ Ċ

β )

Using (4.54) the third and fourth term reduce to the covariant derivative of I , which vanishes:

A ∧ (d̄chIα
β + [X,I ]αβ) = A ∧ (DI )αβ = 0

Finally, the fifth term vanishes since X commutes with �k as a consequence of (4.42). The remaining first
term yields the following expression for the curvature tensor:

Rα
βγ δ = ∂ch

γ �α
βδ − ∂ch

δ �α
βγ − �α

βε Cε [γ δ] + �α
εγ �ε

βδ − �α
εδ�

ε
βγ .
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Inserting these relations into (4.58) and expanding in a Minkowski basis yields:

τα = − i

4
[ξα

AξA
β χ+

B ξB
γ + ζ α

Ȧ
ζ Ȧ
β ϕḂζ Ḃ

γ ] ϑβ ∧ ϑγ = 1

2
T α

βγ ϑβ ∧ ϑγ (4.60)

The torsion tensor thus defined may be simplified introducing the vector fields associated
with the fundamental spinor field as follows:

Tα = 1

2
(ϕȦζ Ȧ

α + χ+
A ξA

α ), Jα = 1

2
(ϕȦζ Ȧ

α − χ+
A ξA

α ) (4.61)

Tα and Jα are called the torsion vector and the current vector respectively. They are orthog-
onal to each other and have opposite squares:

TαT
α = −JαJ

α = χ+ϕ, TαJ
α = 0; Tα = iJβI β

α, Jα = iTβI β
α (4.62)

Inserting these definitions into (4.60) and simplifying the resulting expression with help of
(4.43), the torsion tensor may be written in the form:

T α
βγ = Iα [βJγ ] − iηα [βTγ ] (4.63)

From (4.58) and the structure equation (4.40) one obtains a relation between the torsion
tensor, the connection coefficients (4.50) and the structure functions (4.41) as follows:

T α
βγ + Cα [βγ ] = �α

γβ − �α
βγ (4.64)

Since the connection coefficients are antisymmetric in their first index pair, (4.64) may be
solved for them:

�αβγ = 1

2
(Cγ [αβ] + Cβ[αγ ] − Cα[βγ ]) + Kαβγ , Kαβγ = 1

2
[Tγαβ + Tβαγ − Tαβγ ] (4.65)

The tensor K thus defined is called the contortion tensor and may be expressed in terms of
the vector fields as follows:

Kαβγ = −1

2
[IαβJγ + i(ηαγ Tβ − ηβγ Tα)] (4.66)

5 Field Equations of Spinor Relativity

The dynamical equations of spinor relativity are obtained in analogy to general relativity
from an action principle with action functional given by an integral of the curvature scalar R.
The requirement that the action be stationary with respect to variations of the Dirac metric
yields a differential equation, which is called the spinor Einstein equation and which relates
the Ricci spinor RȦB to the fundamental spinor field. The equations of spinor relativity are
then reexpressed in terms of a Minkowski basis, yielding tensor field equations. The spinor
Einstein equation together with the second Bianchi identities takes the form of gravitational
and electromagnetic Einstein equations, relating the Einstein tensor of the Dirac connection
and the complex electromagnetic field tensor to functions of the fundamental spinor field.
The first Bianchi identities yield equations for the covariant divergences of both the Einstein
tensor and the dual electromagnetic field tensor.
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5.1 Spinor Einstein Equation

As a consequence of the chiral Kähler condition gṀN may not be varied freely on the whole
chiral manifold, but only on a four-dimensional submanifold S . Such a manifold may be de-
fined by the requirement that the right and left coordinates (for particular chiral coordinates)
be equal:

zM
r |S = zM

l |S = zM (5.1)

The action of spinor relativity is given by an integral over S of the curvature scalar R

S = 2Re
∫

S
Rg

∏

M=1,2

dxMdyM (5.2)

where xM and yM are the real and imaginary parts respectively of the joint coordinates zM

and g denotes the determinant of the Dirac metric gṀN . The measure is invariant under chiral
coordinate transformations, which leave (5.1) invariant, as may be seen as follows. Under a
general chiral coordinate transformation the determinant of the metric transforms according
to g′ = g det(KrK̄l)

−1, where the holomorphic coordinate transformation matrices are given
by KM ′

i N = ∂zM ′
i /∂zN

i and zM ′
i denotes the new coordinates. In the special case of a trans-

formation, which leaves the condition (5.1) invariant, Kr and Kl are equal and det(KrK̄l)

becomes real; as a consequence of the Cauchy-Riemann conditions this determinant equals
the Jacobian determinant of

∏

M dxMdzM .
The Lagrangean density

� = gRṀNgNṀ + ḡR+
ṀN

g+NṀ (5.3)

is varied with respect to the Dirac metric. Since the second term depends only on the adjoint
Dirac metric, it does not contribute to the variation of � with respect to the Dirac metric:

δ� = g[gNṀδRṀN + RṀNδgNṀ ] − gRgṀNδgNṀ (5.4)

The last term in this expression arises from the variation of the determinant g. The variation
of the Ricci spinor may be derived from the explicit expression of the curvature spinor in
terms of the Dirac metric

δRṀN = δRS
r NṀS = ∂l

Ṁ
δ(gSṘ∂r

SgṘN ) = ∂l

Ṁ
[gSṘ∂r

SδgṘN − gSQ̇δgQ̇P (gP Ṙ∂r
SgṘN)]

= ∂l

Ṁ
[gSṘDr

SδgṘN ] = Dl

Ṁ
[gSṘDr

SδgṘN ] (5.5)

where Di
M denotes covariant derivation in the direction of the coordinate zM

i . Using further
the compatibility of the connection with the Dirac metric, the first term in the variation of
the Lagrangean density reads:

ggNṀδRṀN = −gDl

Ṁ
Dr

NδgNṀ (5.6)

The covariant divergences may be replaced with coordinate divergences and torsion terms

ggNṀδRṀN = g[−iDr
NϕṀ + χ+

N ϕṀ ]δgNṀ − ∂l

Ṁ
(gDr

NδgNṀ) + i∂r
N (gϕṀδgNṀ) (5.7)
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where the following identities have been used, which are valid for arbitrary spinor fields
XM ∈ W(Mr) and Y Ṁ ∈ W̄ (Ml):

gDr
MXM = ∂r

M(gXM) − igχ+
MXM, gDl

Ṁ
Y Ṁ = ∂l

Ṁ
(gY Ṁ) − igϕṀY Ṁ (5.8)

The variation of the Lagrangean density finally takes the form:

δ� = g[RṀN −gṀNR− iDr
NϕṀ +χ+

N ϕṀ ]δgNṀ −∂l

Ṁ
(gDr

NδgNṀ)+ i∂r
N (gϕṀδgNṀ) (5.9)

The last two terms on the right hand side of (5.9) yield only boundary terms in the variation
of the action integral and will not be considered further. The requirement of stationary action
forces the expression in brackets to vanish, yielding the spinor Einstein equation:

RȦB − RgȦB = iDr
BϕȦ − χ+

B ϕȦ (5.10)

From the trace of the spinor Einstein equation an expression for the curvature scalar R in
terms of the spinor field is obtained:

R = χ+ϕ − iDr
AϕA (5.11)

One may also vary the Lagrangean density with respect to the adjoint Dirac metric, which
yields the following equation:

˜RȦB − RgȦB = iDl

Ȧ
χ+

B − χ+
B ϕȦ (5.12)

Since the action is real, this equation must not be independent of the spinor Einstein equa-
tion. It will indeed be seen in the following that the two equations are equivalent as a conse-
quence of the second Bianchi identities.

5.2 Field Tensors

The dynamics of spinor relativity may also be expressed in form of tensor field equations.
To accomplish this, the Ricci spinors are related to the Dirac-Ricci tensor and the complex
electromagnetic field as follows. In (3.27) the spinor basis may be replaced by a Minkowski
basis:

�A
r B = 1

4
RA

r BĊDζ Ċ
α ξD

β ϑα ∧ ϑβ (5.13)

On the other hand, an expansion of the right curvature matrix in a Minkowski basis is also
obtained from (4.52) and (4.55):

�A
r B = 1

2
[−iFαβδA

B + Qk
αβσA

k B ] ϑα ∧ ϑβ (5.14)

Comparison of these expressions yields:

Fαβ = i

4
RC

r CȦB ζ Ȧ
[αξ

B
β], Qk

αβ = 1

4
σC

k DRD
r CȦB ζ Ȧ

[αξ
B
β] (5.15)

In order to obtain the Dirac-Ricci tensor, (5.15) is inserted into (4.57) and the resulting
expressions are simplified with help of (4.24) and (4.30):

Iα
γ Fγβ = −1

4
RC

r CȦBζ Ȧ
(αξ

B
β), �k

α
γ Qk

γβ = 1

8
σC

k DRD
r CȦB [ζ Ė

α σ k

Ė

ȦξB
β + ζ Ȧ

β σB
k EξE

α ]
(5.16)
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The products of Pauli matrices may further be evaluated using the Fiertz identities (4.17):

4�k
α

γ Qk
γβ = Rr

ĖC

C
B ζ Ė

α ξB
β + RB

r CȦB ζ Ȧ
β ξC

α − RC
r CȦB ζ Ȧ

(αξ
B
β) (5.17)

Comparison with the definition (3.29) of the Ricci spinors finally yields the desired expres-
sions for the Dirac-Ricci tensor and the complex electromagnetic field in terms of Ricci
spinors:

Fαβ = i

4
ρȦB ζ Ȧ

[αξ
B
β], Rαβ = −1

4
[RĊD ζ Ċ

β ξD
α + ˜RĊD ζ Ċ

α ξD
β ] (5.18)

From these expressions it is seen with help of (4.30) that both tensors commute with the
complex spinor structure I .

For connections with torsion one may define the axial Ricci tensor, which is the con-
tracted dual curvature tensor:

˜Rαβ = ˜Rγ
αγβ, ˜Rαβγ δ = 1

2
εαβ

κλRκλγ δ (5.19)

The axial Ricci tensor of the Dirac connection is however not independent, but may be ex-
pressed in terms of the Dirac-Ricci tensor and the complex electromagnetic field, as follows
from (4.56) and the (anti-)selfduality of I and �k :

i ˜Rαβ = Rαβ − 2(I F )αβ (5.20)

Using the identity (4.32) it is further seen with help of (4.30) that the dual of the complex
electromagnetic field may be written as follows:

iF ∗
αβ = Fαβ − 1

4
ρIαβ (5.21)

From the Dirac-Ricci tensor and the axial Ricci tensor one obtains the Dirac-Einstein
tensor and the axial Einstein tensor by subtraction of a trace term or equivalently by con-
traction of the ‘double dual’ of the corresponding curvature tensor:

Gαβ = Rαβ − 1

2
ηαβ Rγ

γ = ˜R∗γ
βγα, ˜Gαβ = ˜Rαβ − 1

2
ηαβ

˜Rγ
γ = −R∗γ

βγα (5.22)

where the asterisk denotes the dual with respect to the second index pair and the minus sign
in the last term arises from taking twice the dual with respect to the first index pair. The
traces of the field tensors are derived with help of (4.28)

Gγ
γ = −Rγ

γ = R, ˜Gγ
γ = −˜Rγ

γ = i(ρ − R) (5.23)

while contraction with the complex spinor structure yields:

(F I )γ
γ = −i(F ∗I )γ

γ = −1

2
ρ, (RI )γ

γ = (˜RI )γ
γ = 0 (5.24)

5.3 Second Bianchi Identities

From the second Bianchi identities (3.13) the following relations involving the Riemann
spinors and covariant derivatives of the torsion spinors are derived

Di
[CT D

i AB] + T D
i E[CT E

i AB] = 0, Dĩ

Ȧ
T D

i CB = RD
i BȦC − RD

i CȦB (5.25)
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where ĩ is the chirality index opposite to i. These two equations are the (3i ,0)-type and
(2i ,1ĩ )-type part respectively of the 3-form identities (3.13). In case of a Dirac manifold of
dimension n = 2 the left hand side of the first equation vanishes identically since the are no
antisymmetric combinations of three indices. Contraction of the second equation yields the
magnetic identities

−iDl

Ȧ
χ+

B = RȦB − ρȦB, −iDr
BϕȦ = ˜RȦB − ρȦB (5.26)

where the hermitian adjoint was taken in the case i = l. With help of the magnetic identities
it is seen that the dynamical equation (5.12), obtained from varying the action with respect
to the adjoint Dirac metric, is equivalent to the spinor Einstein equation. Further, the right
spinor divergence is seen to be complex conjugate to the left spinor divergence and related
to the curvature scalars as follows:

Dr
AϕA = Dl

Ȧ
χ Ȧ = i(R − ρ) (5.27)

The second Bianchi identity may also be written in tensor form:

dτα + 	α
β ∧ τβ = �α

β ∧ ϑβ (5.28)

The (3,0)ch-part and the (2,1)ch-part of this 3-form identity yield the following tensor equa-
tions

Dch
[δ T α

βγ ] + T α
ε[δT ε

βγ ] = Rα [βγ δ], D̄ch
δ T α

βγ = 0 (5.29)

where Dch
α denotes covariant derivation in the direction of Eα . The first equation may be

contracted with the totally antisymmetric tensor, which is covariantly constant as follows
from its representation (4.32). This yields an identity for the axial Einstein tensor

˜Gαβ = −Dch
γ T ∗

βα
γ + T ∗

γ δαTβ
γ δ, D̄ch

δ T α
βγ = 0 (5.30)

where the asterisk denotes the dual torsion tensor; the torsion tensor of the Dirac connection
is selfdual, as may be derived from (4.63):

T ∗
αβγ = 1

2
Tαδεε

δε
βγ = iTαβγ (5.31)

One further obtains the following properties of the torsion of the Dirac connection

T β
αβ = iTα, T β

αγ I γ
β = Jα, T α

βγ I βγ = 0, Tγ δαTβ
γ δ = 0 (5.32)

which are used to derive the contracted second Bianchi identities from (5.30)

Dch
α T α = i(R − ρ), Dch

α J α = 0; D̄ch
α Tβ = 0, D̄ch

α Jβ = 0 (5.33)

where the relations (5.23) and (5.24) have been taken into account.
From these identities together with the contracted spinor Einstein equation (5.11) it is

seen that the curvature scalars are related to the scalars of the fundamental spinor field as
follows:

R = μ2 + σ, ρ = μ2; μ2 = χ+ϕ = TαT
α, iσ = Dr

AϕA = Dch
α T α (5.34)



Int J Theor Phys (2008) 47: 3341–3390 3375

5.4 Einstein Equations

In order to derive tensor Einstein equations, the spinor Einstein equation (5.10) and the
magnetic identities (5.26) are inserted into (5.18):

Rαβ = − i

4
[ Dl

Ċ
χ+

D ζ Ċ
α ξD

β + Dr
DϕĊ ζ Ċ

β ξD
α ] + 1

2
[χ+

B ϕȦ − δȦB(μ2 + σ)]ζ Ȧ
(αξ

B
β)

(5.35)

Fαβ = −1

4
[Dl

Ȧ
χ+

B + Dr
BϕȦ]ζ Ȧ

[αξ
B
β] − i

4
[χ+

B ϕȦ − δȦB(μ2 + σ)]ζ Ȧ
[αξ

B
β]

The Dirac metric takes unit form, since the indices refer to a spinor basis. The covariant
spinor derivatives may be expressed in terms of vector derivatives with help of (4.30):

ξC
α Dr

C = (ηβ
α − iI β

α)D
ch
β , ζ Ċ

α Dl

Ċ
= (ηβ

α + iI β
α)D

ch
β (5.36)

Using further the relations (4.29) in the last terms, the Einstein equations may be written in
the form:

Rαβ = − i

4
[(η + iI )γ

αξ
B
β Dch

γ χ+
B + (η − iI )γ

αζ
Ḃ
β Dch

γ ϕḂ] + 1

2
χ+

B ϕȦζ Ȧ
(αξ

B
β)

− 1

2
(μ2 + σ)ηαβ

(5.37)

Fαβ = −1

4
[(η + iI )γ [αξB

β]D
ch
γ χ+

B + (η − iI )γ [βζ Ȧ
α]D

ch
γ ϕȦ] − i

4
χ+

B ϕȦζ Ȧ
[αξ

B
β]

+ 1

4
(μ2 + σ)Iαβ

The expressions on the right hand sides may be simplified using the vector fields (4.61) and
taking into account the covariant constancy of the spinor tetrad fields:

Rαβ = − i

2
(Dch

γ Tδ)(η
γ

αη
δ
β + I γ

αI
δ
β) + 1

2
(TαTβ − JαJβ) − 1

2
(μ2 + σ)ηαβ

(5.38)

Fαβ = 1

2
(Dch

γ Jδ)(η
γ [αηδ

β] + I γ [αI δ
β]) − i

2
J[αTβ] + 1

4
(μ2 + σ)Iαβ

In the first of these equations the Dirac-Ricci tensor is replaced with the Dirac-Einstein
tensor (5.22) yielding the gravitational Einstein equation:

Gαβ = − i

2
(Dch

γ Tδ)(η
γ

αη
δ
β + I γ

αI
δ
β) + 1

2
(TαTβ − JαJβ) (5.39)

Using the identity (4.32), the electromagnetic Einstein equation may be written in the form:

Fαβ = 1

2
(Dch

γ Jδ)

(

ηγ [αηδ
β] + i

2
εγ δ

αβ

)

− i

2
J[αTβ] + 1

4
μ2Iαβ (5.40)

Inserting these equations into (5.20) one further obtains an axial Einstein equation, which
however does not provide independent information:

i˜Gαβ = i

2
(Dch

γ Tδ)(η
γ

βηδ
α + I γ

βI δ
α) + 1

2
σηαβ (5.41)
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5.5 First Bianchi Identities

In addition to the dynamical Einstein equations, further information is obtained from the
first Bianchi identities. Taking the trace of (3.11) it is seen that the electromagnetic 2-form
is closed, which also follows immediately from (4.54):

dF = 0 (5.42)

In order to reexpress this in terms of the covariant divergence of the dual electromagnetic
field tensor, it is more convenient to start from the first Bianchi identity written in tensor
form:

d�α
β + 	α

γ ∧ �γ
β − �α

γ ∧ 	γ
β = 0 (5.43)

Expanding the matrix valued forms in a Minkowski basis one obtains:

Dch
[ε Rαβ

γ δ] + Rαβ
κ[εT κ

γ δ] = 0, D̄ch
ε Rα

βγ δ = 0 (5.44)

These equations are the (3,0)ch-type part and (2,1)ch-type part respectively of the 3-form
identity (5.43). The first of these relations may be written in a more convenient form by
contracting it with the totally antisymmetric tensor

Dch
δ R∗

αβγ
δ + 1

2
R∗

αβδε
̂Tγ

δε = 0, D̄ch
ε R∗

αβγ δ = 0 (5.45)

where ̂T is a modified torsion tensor with trace terms subtracted; in case of the Dirac connec-
tion the modified torsion tensor differs from (4.63) by the sign between its two contributions:

̂T α
βγ = T α

βγ + ηα
βT δ

γ δ − ηα
γ T δ

βδ = Iα [βJγ ] + iηα [βTγ ] (5.46)

Contracting (5.45) with I and taking into account its covariant constancy, the following
identities for the dual electromagnetic field tensor are obtained, which are equivalent to
(5.42):

Dch
β F ∗

α
β + 1

2
F ∗

βγ
̂Tα

βγ = 0, D̄ch
α F ∗

βγ = 0 (5.47)

Taking the dual with respect to its first index pair of the curvature tensor in (5.45) before
contracting with the Minkowski metric yields the corresponding identities for the Dirac-
Einstein tensor:

Dch
β Gβ

α − 1

2
˜R∗

αβγ δ
̂T βγ δ = 0, D̄ch

α Gβγ = 0 (5.48)

Inserting the expression (5.46) for the modified torsion tensor of the Dirac connection into
(5.47) and (5.48) and taking into account that the Dirac-Einstein tensor as well as the dual
electromagnetic field tensor commute with I , the contracted first Bianchi identities simplify
as follows:

(Dch
β + iTβ)F ∗

α
β = 0, D̄ch

α F ∗
βγ = 0; (Dch

β + iTβ)Gβ
α = 0, D̄ch

α Gβγ = 0 (5.49)
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6 Heisenberg Equation System

In this chapter the field equations of spinor relativity are reformulated in such a way that
they resemble more closely the usual Einstein, Maxwell and Dirac equations on spacetime
describing gravitational and electromagnetic fields coupled to a Dirac spinor field. To this
end the complex Minkowski bases are decomposed into their real and imaginary parts, defin-
ing classical and axial vectors respectively. As a consequence of the chiral Kähler condition
derivatives in the directions of axial vectors may be expressed in terms of derivatives in clas-
sical vector directions. In order to describe the gravitational field, the Einstein connection ∇
is introduced, which is obtained from the Dirac connection D by removing its torsion. The
Heisenberg equation system consists of gravitational and electromagnetic Einstein equa-
tions expressed in terms of the Einstein connection, both homogeneous and inhomogeneous
Maxwell equations for the complex electromagnetic field and a non-linear generalized Dirac
equation for the fundamental spinor field.

6.1 Real Minkowski Bases

In order to define real Minkowski bases in the tangent bundle, the complex basis vectors are
decomposed into their real and imaginary parts:

eα = Eα + Ēα, ẽα = −i(Eα − Ēα) (6.1)

The real basis forms dual to eα and ẽα are given by:

ωα = 1

2
(ϑα + ϑ̄α), ω̃α = i

2
(ϑα − ϑ̄α) (6.2)

The linear combinations of the basis fields eα are called classical vectors, while the linear
combinations of the basis fields ẽα define axial vectors. The spaces of classical and axial
vectors are Lorentz invariant but D(1)-gauge transformations mix them. Between real basis
vectors the product in the tangent bundle takes the form:

(eα, eβ) = −(ẽα, ẽβ) = ηαβ, (eα, ẽβ) = (ẽα, eβ) = 0 (6.3)

The structure equations for real bases are derived from the corresponding equation (4.40)
for complex Minkowski bases

dωα = −1

2
(Re cα

βγ ωβ ∧ ωγ + Im cα
βγ ω̃β ∧ ωγ + Re c̃α

βγ ωβ ∧ ω̃γ

+ Im c̃α
βγ ω̃β ∧ ω̃γ )

(6.4)

dω̃α = −1

2
(Re c̃α

βγ ω̃β ∧ ω̃γ − Im c̃α
βγ ωβ ∧ ω̃γ + Re cα

βγ ω̃β ∧ ωγ

− Im cα
βγ ωβ ∧ ωγ )

with new structure functions given by linear combinations of C and ˜C

cα
βγ = (C + ˜C)α

βγ = ξM
β ∂γ ξα

M + ζ Ṁ
β ∂γ ζ α

Ṁ
,

(6.5)
c̃α

βγ = −i(C − ˜C)α
βγ = ξM

β ∂̃γ ξα
M + ζ Ṁ

β ∂̃γ ζ α

Ṁ
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where ∂α and ∂̃α denote derivatives in the directions of the basis vectors eα and ẽα respec-
tively. Equivalently one obtains the commutators of basis vectors, which show that in general
the subspaces of classical or axial vectors are not integrable:

[eα, eβ ] = Re cγ [αβ]eγ − Im cγ [αβ]ẽγ , [ẽα, ẽβ ] = Re c̃γ [αβ]ẽγ + Im c̃γ [αβ]eγ

(6.6)

[ẽα, eβ ] = 1

2
(Im cγ

αβ − Re c̃γ
βα)eγ + 1

2
(Re cγ

αβ + Im c̃γ
βα)ẽγ

The Dirac connection mixes classical and axial vectors, as may be seen from the connec-
tion matrix in terms of real bases:

D(eα, ẽα) = (eβ, ẽβ)

(

Re	β
α Im	β

α

−Im	β
α Re	β

α

)

,

(6.7)

D

(

ωα

ω̃α

)

= −
(

Re	α
β Im	α

β

−Im	α
β Re	α

β

)(

ωβ

ω̃β

)

6.2 Einstein Connection for Vectors

The gravitational field is described by the torsion-free Einstein connection ∇ . Its connec-
tion matrix in a Minkowski basis is obtained from the Dirac connection matrix (4.50) by
subtracting the contortion tensor from the connection coefficients (4.65):

(	E )α
β = 	α

β − κα
β, κα

β = Kα
βγ ϑγ (6.8)

The corresponding curvature matrix is given by:

(�E )α
β = �α

β − �α
β, (�E )α

β = d(	E )α
β + (	E )α

γ ∧ (	E )γ
β

(6.9)
�α

β = dκα
β + 	α

γ ∧ κγ
β + κα

γ ∧ 	γ
β − κα

γ ∧ κγ
β

An expansion of the Einstein connection matrix in terms of real basis forms yields

(	E )α
β = �α

βγ ωγ +˜�α
βγ ω̃γ (6.10)

where the connection coefficients are obtained from comparison with (4.50):

�α
βγ = �α

βγ − Kα
βγ − 1

2
˜Cα

βγ , ˜�α
βγ = −i

(

�α
βγ − Kα

βγ + 1

2
˜Cα

βγ

)

(6.11)

Since they are antisymmetric in their first index pair, they may be written in a form analogous
to (4.65), involving the structure functions c and c̃:

�αβγ = 1

2
(cγ [αβ] + cβ[αγ ] − cα[βγ ]), ˜�αβγ = 1

2
(c̃γ [αβ] + c̃β[αγ ] − c̃α[βγ ]) (6.12)

The expansion of the matrix of 2-forms � in terms of Minkowski basis forms is given by:

�α
β =

[

Dch
γ Kα

βδ + 1

2
Kα

βεT
ε
γ δ − Kα

εγ Kε
βδ

]

ϑγ ∧ ϑδ + [D̄ch
γ Kα

βδ] ϑ̄γ ∧ ϑδ (6.13)
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The last term vanishes as a consequence of the second Bianchi identity (5.29). Thus � is a
matrix of forms of type (2,0)ch and consequently the same is true for the Einstein curvature
matrix �E . The expansion of �E defines the Riemann tensor

(�E )α
β = 1

2
Rα

βγ δ ϑγ ∧ ϑδ (6.14)

which in terms of connection coefficients is given by:

Rα
βγ δ = ∂γ �α

βδ − ∂δ�
α

βγ − �α
βεRe cε [γ δ] + �α

εγ �ε
βδ − �α

εδ�
ε
βγ (6.15)

Contraction of the Riemann tensor yields the Ricci tensor. Its relation to the Dirac-Ricci
tensor is obtained from (6.13) as follows:

Rαβ = Rγ
αγβ = Rαβ − [Dch

γ Kγ
αβ − Dch

β Kγ
αγ + Kγ

αδ Kδ
βγ − Kδ

γ δ Kγ
αβ ] (6.16)

From the expression (4.66) of the contortion tensor in terms of the vector fields the following
identities are derived

Kαβ
β = iTα, KβγαI

γβ = Jα, Kβγα�
βγ

k = iTβ�
β

k α

(6.17)

T γ Kγβα = − i

2
(TαTβ − JαJβ − μ2ηαβ), J γ Kγβα = 0, Kαγ δ Kβ

δγ = −1

2
TαTβ

which may be used to simplify (6.16) as follows:

Rαβ = Rαβ − i

2
(Dch

γ Tδ)(η
γ

βηδ
α − I γ

αI
δ
β) + 1

2
JαJβ + 1

2
(μ2 + σ)ηαβ (6.18)

6.3 Einstein Connection for Spinors

In Dirac spinor notation the connection matrix of the Dirac connection (4.47) takes the form

̂	D =
(

	l 0
0 	r

)

= −iRe A14 − Im Aγ5 + 1

2
Re(Lk�k

αβ)Sαβ (6.19)

as may be verified with help of (4.22) and (4.25). This matrix of 1-forms is expanded in a
real Minkowski basis as follows

̂	D = �D
α ωα + iγ5�

D
α ω̃α, �D

α = −iAα − ˜Aαγ5 + 1

2
Re(Lk

α�
k
βγ )Sβγ (6.20)

where the duality properties of the Lorentz generators (4.16) and of spacetime Pauli ma-
trices (4.22) have been used. The real and imaginary parts of the complex electromagnetic
potential

Aα = Re Aα, ˜Aα = Im Aα (6.21)

multiply the U(1) and D(1) generators and are called the electromagnetic and axial vector
potential respectively. The complex electromagnetic field tensor correspondingly decom-
poses into the electromagnetic and axial field tensors:

Fαβ = Re Fαβ = 2∂[αAβ] − Aγ Re cγ [αβ], ˜Fαβ = Im Fαβ = 2∂[α ˜Aβ] − ˜Aγ Re cγ [αβ]
(6.22)
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From (4.50) and (6.11) one may further derive the following expression for the complex
electromagnetic potential in terms of the fundamental spinor field and the connection coef-
ficients

Aα = 1

4

(

�βγα + Kβγα + 1

2
˜Cβγα

)

I γβ = − i

2
μ̄−2(ϕ+ ↔

∂α χ) + 1

4
Jα + 1

4
�βγαI

γβ (6.23)

where the term involving ˜C has been evaluated with help of (4.42) using the chirality condi-
tion (4.3) in order to replace antichiral derivatives ∂̄ ch

α with classical derivatives ∂α .
In case of the Dirac connection the relation between the connection matrices in spinor

and Minkowski bases was determined by the requirement (4.46) that the spinor tetrad fields
be covariantly constant. The Einstein connection will instead be extended to spinors by
defining the connection matrices in Dirac spinor notation as follows:

̂	E = �E
α ωα + iγ5�

E
α ω̃α, �E

α = −iAα + 1

4
(Re�βγα)S

βγ (6.24)

With this definition the tetrad fields are not covariantly constant with respect to the Einstein
connection. Rather, the definition is chosen such that after symmetry breaking the Einstein
connection for spinors becomes equal to the spin connection on spacetime.

In order to relate the spinor coefficients of both connections, the 1-forms Lk are expressed
in terms of � using (4.50)

Lk
α = 1

4

(

�βγα − 1

2
˜Cβγα

)

�
γβ

k (6.25)

where an additional term involving ˜C has been introduced, which vanishes according to
(4.42). Replacing further the Dirac connection coefficients � with the Einstein connection
coefficients � using (6.11), the Dirac spinor connection coefficients (6.20) take the form:

�D
α = −iAα − ˜Aαγ5 + 1

8
Re[(�δεα + Kδεα)�

εδ
k �k

βγ ] Sβγ (6.26)

The term involving the contortion tensor may be simplified with help of (6.17). Using further
the identity (4.23) and the duality property (4.16) of the Lorentz generators, (6.26) may be
written as follows:

�D
α = −iAα − ˜Aαγ5 + 1

4
[(Re − iγ5Im)�βγα] Sβγ − 1

4
[(Im + iγ5Re)Tβ] Sβ

α (6.27)

Subtracting the Einstein spinor connection coefficients one finally obtains:

Kα = �D
α − �E

α = −˜Aαγ5 − i

4
γ5(Im�βγα)S

βγ − 1

4
[(Im + iγ5Re)Tβ ]Sβ

α (6.28)

6.4 Electromagnetic Einstein Equation

As a consequence of the contracted second Bianchi identities (5.33) the chiral covariant
derivatives Dch

α of the vector fields occurring on the right hand sides of the Einstein equa-
tions (5.39) and (5.40) may be replaced with covariant derivatives Dα in the directions of
classical basis vectors eα . The latter may further be expressed in terms of Einstein covariant
derivatives ∇α as follows

Dch
α Tβ = DαTβ = ∇αTβ + i

2
(TαTβ − JαJβ − μ2ηαβ), Dch

α Jβ = DαJβ = ∇αJβ (6.29)
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where the identities (6.17) have been used to evaluate the torsion terms. The electromagnetic
Einstein equation (5.40) thus takes the form:

Fαβ = 1

2
∇[αJβ] + i

4
εαβ

γ δ∇γ Jδ − i

2
J[αTβ] + 1

4
μ2Iαβ (6.30)

For products of vector fields the following identities hold

TαTβ − JαJβ = 1

2
μ2(η + I Ī )αβ, J[αTβ] = 1

2
μ2Im Iαβ (6.31)

which are derived with help of (4.43) and the Fiertz identities (4.17) as follows:

(η + I Ī − iI + iĪ )α
β = ξα

CξC
γ ξ

γ

Ḋ
ξ Ḋ
β = 2(μμ̄)−2(ϕ+σαϕ)(χ+σ̂βχ)

= 2μ−2(T α + J α)(Tβ − Jβ) (6.32)

The relations (6.31) are obtained as the symmetric and antisymmetric part respectively of
(6.32), taking into account that (I Ī )αβ is symmetric according to (4.22).

Using the second of these identities, the right hand side of (6.30) may be simplified
further and the electromagnetic Einstein equation finally takes the form:

Fαβ = 1

4
μ2Re Iαβ + 1

2
∇[αJβ] + i

4
εαβ

γ δ∇γ Jδ (6.33)

6.5 Gravitational Einstein Equation

In the gravitational Einstein equation (5.39) the Dirac-Einstein tensor is replaced with the
Einstein tensor of the Einstein connection using the relation (6.18):

Gαβ = Rαβ − 1

2
ηαβRγ

γ = −iD(αTβ) + 1

2
TαTβ − 1

2

(

σ + 1

2
μ2

)

ηαβ (6.34)

The covariant derivative of the torsion vector may be expressed in terms of derivatives of
the fundamental spinor field as follows

DαTβ = 1

2
μ̄−1[ϕ+σβDαϕ + (Dαχ

+)σ̂βχ ] (6.35)

where the covariant constancy of the spinor tetrad fields has been used. Introducing a Dirac
spinor notation for the fundamental spinor field

� =
(

χ

ϕ

)

, �̄ = �+β; Tα = i

2
μ̄−1�̄γ5γα�, Jα = i

2
μ̄−1�̄γα� (6.36)

and replacing the Dirac covariant derivatives with Einstein covariant derivatives, (6.35) may
be evaluated further as follows

DαTβ = i

2
μ̄−1[�̄γβPrDα� − (Dα�̄)γβPl�]

= i

4
μ̄−1[�̄↔∇αγβ� + ∇α(�̄γ5γβ�)] + i

2
μ̄−1[�̄γβPrKα� − �̄βK+

α βPrγβ�]

+ i

2
(Tγ + Jγ )Im�γ

βα (6.37)
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with chiral projectors (4.6). The last term compensates for the derivatives of the Dirac matri-
ces γβ introduced in the first two terms of the second line. In general, the covariant derivative
of a Dirac matrix is not well-defined in spinor relativity. In the present case the Lorentz in-
dex of γβ has its origin in the vector field Tβ and thus refers to the bundle U ∗(Mch), which
determines its covariant derivative as follows:

∇αγβ� = γβ∂α� + �E
α γβ� − γδ��δ

βα = γβ∇α� − iγδ�Im�δ
βα (6.38)

The terms involving K may be evaluated with help of (6.28) and the (anti-)commutation
relations (4.15) between Lorentz generators and Dirac matrices

PrKα = −βK+
α βPr = Pr

[

˜Aα + i

4
(Tγ ηβα + Im�γβα)S

γβ

]

i

2
μ̄−1[�̄γβPrKα� − �̄βK+

α βPrγβ�]
(6.39)

= ˜AαJβ + i

2
(T[γ ηδ]α + Im�γδα)

(

ηβ
γ T δ + i

2
εβε

γ δT ε

)

= ˜AαJβ + i

4
(TαTβ − μ2ηαβ) + 1

2
T γ (Im�∗

γβα − iIm�γβα)

where the asterisk denotes the dual with respect to its first index pair of the connection coef-
ficient. The Dirac covariant derivative of the torsion vector may thus be written as follows:

DαTβ = i

4
μ̄−1(�̄

↔∇αγβ�) + 1

2
(∇αTβ + Tβ∂α ln μ̄)

+ ˜AαJβ + i

4
(TαTβ − μ2ηαβ) + 1

2
(T γ Im�∗

γβα + iJ γ Im�γβα) (6.40)

Comparison with (6.29) allows to eliminate the Einstein derivative of the torsion vector,
and the desired expression of the Dirac derivative of the torsion vector in terms of Einstein
derivatives of the fundamental spinor field is given by:

DαTβ = i

2
μ̄−1(�̄

↔∇αγβ�) + i

2
JαJβ + 2˜AαJβ + Tβ∂α ln μ̄ + T γ Im�∗

γβα + iJ γ Im�γβα

(6.41)
Inserting (6.41) into (6.34) and eliminating the product of two current vectors with help

of (6.31), the gravitational Einstein equation finally takes the form:

Gαβ = 1

2
μ̄−1[�̄↔∇(αγβ)�] + TαTβ − 1

4
μ2(I Ī )αβ − 1

2
(σ + μ2)ηαβ

− 2i ˜A(αJβ) − iT(β∂α) ln μ̄ − iT γ Im�∗
γ (βα) + J γ Im�γ(βα) (6.42)

6.6 Maxwell Equations

The homogeneous Maxwell equation is obtained from the contracted first Bianchi identity
for the dual electromagnetic field tensor (5.49) by replacing the Dirac divergence with the
Einstein divergence

Dβ F ∗αβ = ∇β F ∗αβ − iF ∗αβTβ (6.43)
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where it has been taken into account that F ∗ commutes with the complex spinor structure.13

The term involving the torsion vector cancels the corresponding term in the Bianchi identity
and the homogeneous Maxwell equation takes the form:14

∇β F ∗αβ = 0 (6.44)

The inhomogeneous Maxwell equation is derived from the divergence of (5.21) and the
homogeneous equation (6.45)

0 = ∇β F αβ − 1

4
∇β(μ2Iαβ) (6.45)

where the curvature scalar ρ has been replaced by its value (5.34) from the dynamical equa-
tions. Inserting the Einstein divergence of the complex spinor structure

∇βI αβ = −J α (6.46)

the inhomogeneous Maxwell equation takes the form:

∇β F αβ = −1

4
μ2(J α − Iαβ∂β lnμ2) (6.47)

6.7 Dirac Identity

From the covariant constancy of the spinor tetrad fields with respect to the Dirac connection
the following expressions for their Einstein covariant derivatives are obtained

∇αξ
A
β + (Kr

α)
A

BξB
β − ξA

γ Kγ
βα = 0, ∇αζ

A
β + (Kl

α)
A

BζB
β − ζA

γ K̄γ
βα = 0 (6.48)

where Kl and Kr denote the upper and lower parts respectively of the block diagonal matrix
K defined in (6.28). On the other hand, the tetrad fields constitute up to scalar factors the
Dirac spinor γβ�:

iγβ� =
(

σβϕ

−σ̂βχ

)

=
(

μ ζA
β

−μ̄ ξA
β

)

(6.49)

The two equations (6.48) may thus be combined into a single equation as follows:

∇αγβ� − [(Re + iγ5Im)∂α lnμ]γβ� + Kαγβ� − [(Re − iγ5Im)Kδ
βα]γδ� = 0 (6.50)

In evaluating the covariant derivative of γβ it must be taken into account that the Lorentz
index in the upper and lower part of (6.49) refers to the bundles Ū ∗(Mch) and U ∗(Mch)

13In general, the relation between the Dirac and Einstein divergences of an arbitrary tensor field Mαβ is given
by:

DβMαβ = ∇βMαβ − 2iM(αβ)Tβ − iM[αβ]Tβ + 1

2
[M,I ]αβJβ + i

2
T αMβ

β.

14From the contracted first Bianchi identity for G one obtains the corresponding identity ∇βGβ
α = 0 for the

Einstein tensor of the Einstein connection, which of course also follows immediately from the first Bianchi
identity for the torsion-free Einstein connection. This equation will however not be considered explicitly in
the following.
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respectively:

∇αγβ� = γβ∂α� + �E
α γβ� + i

(

σγ ϕ �̄γ
βα

−σ̂γ χ �γ
βα

)

= γβ∇α� + iγ5γδ�Im�δ
βα (6.51)

This result is inserted into (6.50) and the Lorentz indices are contracted with the Minkowski
metric. The third term may be evaluated with help of (6.28):

Kαγ
α = −˜Aαγ5γ

α − 1

2
(Im�∗

αβ
β + iγ5Im�αβ

β)γ α − 3

4
[(Im + iγ5Re)Tα]γ α (6.52)

From contracting the contortion tensor in (6.50) a term of the same form as the last term on
the right hand side of (6.52) arises, but with a factor of unity. Finally, one obtains an identity
for the fundamental spinor field, which is independent of the dynamical equations of spinor
relativity and is called the Dirac identity:

γ α∇α� =
[

(Re + iγ5Im)∂α lnμ + ˜Aαγ5 + 1

2
(Im�∗

αβ
β − iγ5Im�αβ

β)

− 1

4
(Im + iγ5Re)Tα

]

γ α� (6.53)

7 Symmetry Breaking

The Dirac manifold is considered as a quantum manifold in the sense that the Dirac metric
and the fields derived from it are operator valued. In contrast to quantum gravity, where it
is usually assumed that the metric has a large classical part, which is responsible for the
classical appearance of spacetime, the Dirac metric is supposed to be far from classical be-
haviour and the eight-dimensional manifold may not be imagined as a classical manifold.
In this chapter it is shown how spacetime might be understood as arising from a degenerate
ground state of spinor relativity, which breaks D(1)-gauge symmetry as well as covariance
with respect to independent coordinate transformations on the right and left manifolds. The
development of the ground state involves the choice of a preferred four-dimensional sub-
manifold S of the Dirac manifold, which attains classical properties and is equipped with a
Lorentz metric.

Consistency requires the energy scale set by the degenerate ground state to be of Planck
order, which means that fields at ordinary energy scales may be considered as small exci-
tations above this ground state. The usual Einstein and Maxwell equations describing real
electromagnetic and gravitational fields coupled to a spinor field may be derived from the
Heisenberg equation system as an approximation valid in the vicinity of the ground state,
where the Planck length and the fine structure constant are related to the scale of the ground
state. The electromagnetic Einstein equation further leads to an interpretation of the electro-
magnetic field as arising from the polarization of the ground state condensate.

7.1 The Ground State

The ground state expectation value of the invariant square of the fundamental spinor field is
assumed to be positive:

〈χ+ϕ〉0 = μ2
0 > 0 ⇔ 〈�̄�〉0 = 2μ2

0, 〈�̄γ5�〉0 = 0 (7.1)



Int J Theor Phys (2008) 47: 3341–3390 3385

There is further the possibility for products of right or left spinor fields with dyad fields
to have Lorentz invariant ground state expectation values, which in spinor relativity are
supposed to take the form:

〈ϕAϕ+
B EC

r MEM
l D〉0 = 1

2
μ2

0ε
AC
r εl

BD, 〈χAχ+
B EC

l MEM
r D〉0 = 1

2
μ2

0ε
AC
l εr

BD (7.2)

The matrices on the right hand sides are SL(C2) and U(1) invariant, but are multiplied
by dilatation factors on D(1)-transformations, which means that D(1)-gauge symmetry is
broken. Since the chiral coordinate indices on the right and left dyad fields in (7.2) refer to
the right and left manifold respectively, their contraction in products of dyad fields further
breaks the chiral symmetry of independent coordinate transformations on the right and left
manifolds.

These ground state expectation values allow to define a four-dimensional submanifold S
of the Dirac manifold as consisting of pairs of points on the right and left manifold, which
satisfy the condition

zM
r |S = zM

l |S = zM (7.3)

with respect to chiral coordinates compatible with (7.2). This condition is left invariant by
the unbroken symmetry of joint coordinate transformations on both manifolds. The ground
state thus distinguishes a preferred submanifold S , which will be identified with spacetime.
In this chapter attention is restricted to spacetime and the following results are valid on S
only. In particular, the possibility is left open that the ground state expectation values may
vary on the Dirac manifold such that the functions, which replace μ2

0 on the right hand sides
of (7.1) and (7.2) respectively, take equal constant values on S but vary independently on
leaving the spacetime submanifold.

In restricting attention to functions on spacetime, it has to be taken into account that the
differential further distinguishes between right and left coordinates, which may be identified
only after derivatives have been performed. This differential structure on S may be alterna-
tively described without reference to the right and left manifold as follows. Since in spinor
relativity all fields derive from the dyad fields, which satisfy the chirality conditions (3.21),
an arbitrary field φ on S may be written as a sum of products of chiral and antichiral fields:

φ(z) =
∑

ν

φ+
ν (z)φ−

ν (z), d̄chφ
+
ν = 0, dchφ

−
ν = 0 (7.4)

Instead of right and left coordinate derivatives it is convenient to introduce the following
linear combinations:

∂M = ∂r
M + ∂l

M, ∂̃M = ∂r
M − ∂l

M (7.5)

∂M is the classical derivative on S with respect to the joint coordinate zM , which does not
distinguish between chiral and antichiral fields. The axial derivative ∂̃M on the other hand
acts on antichiral fields with a negative sign:

∂Mφ(z) = ∂

∂zM
φ(z), ∂̃Mφ(z) =

∑

ν

[

φ−
ν (z)

∂

∂zM
φ+

ν (z) − φ+
ν (z)

∂

∂zM
φ−

ν (z)

]

(7.6)

It will be seen that μ0 is of Planck order, which means that fields at usual energies may
be considered as small excitations above the ground state. One may expect to obtain a good
approximation for the description of these excitations, if the expressions on the left hand
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sides of (7.1) and (7.2) are replaced with their ground state expectation values. This approx-
imation is called the vacuum approximation and will be applied to the Heisenberg equation
system in the next section. It is now shown that spacetime becomes equipped with a Lorentz
metric in the vacuum approximation.

To this end a field Z is introduced, which transforms right and left spinor tetrad fields
into each other:

ξM
β Zβ

α = ζM
α , ζ Ṁ

β Zβ
α = ξṀ

α ; Zα
βζ

β

M = ξα
M, Zα

βξ
β

Ṁ
= ζ α

Ṁ
(7.7)

As may be seen from the identities (4.28) this is accomplished by the following choice:

Zα
β = 1

2
(ξα

MζM
β + ζ α

Ṁ
ξ Ṁ
β ) (7.8)

Contracting (7.2) with Weyl matrices and taking into account the duality properties (4.18),
one obtains the following ground state expectation values for products of spinor tetrad fields

〈ξα
MζM

β 〉0 = 1

2
(σ α)B

C(σβ)D
AεAC

r εl
BD = ηα

β,

(7.9)

〈ζ α
MξM

β 〉0 = 1

2
(σ̂ α)B

C(σ̂β)D
AεAC

l εr
BD = ηα

β

which show that Z has unit ground state expectation value:

〈Zα
β〉0 = ηα

β (7.10)

The choice of D(1)-gauge enforced by (7.2) implies an invariant decomposition of the
tangent spaces of the Dirac manifold into classical and axial vectors, which do not mix under
transformations from the unbroken gauge group SL(C2) ◦ U(1). In the vacuum approxima-
tion the classical vectors eα may be identified with the tangent vectors of S . In order to see
this the derivatives ∂α and ∂̃α in the directions of classical and axial basis vectors eα and ẽα

respectively are considered, which may be written in terms of Z and the derivatives (7.5) as
follows:

∂α = Re(ξM
α ∂r

M + ζM
α ∂l

M) = 1

2
Re[(η + Z)β

αξ
M
β ∂M + (η − Z)β

αξ
M
β ∂̃M ]

(7.11)

∂̃α = Im(ξM
α ∂r

M − ζM
α ∂l

M) = 1

2
Im[(η − Z)β

αξ
M
β ∂M + (η + Z)β

αξ
M
β ∂̃M ]

In the vacuum approximation Z is replaced with its ground state expectation value (7.10),
yielding the simplified expressions

∂α
◦=Re(ξM

α ∂M), ∂̃α
◦=Im(ξM

α ∂̃M) (7.12)

where
◦= denotes equality within the vacuum approximation. It is seen that ∂α is a combi-

nation of classical derivatives ∂M on spacetime and does not involve contributions from the
axial derivatives ∂̃M . This means that the spaces spanned by the basis vectors eα are equal to
the tangent spaces of S within the vacuum approximation. Since further the Dirac product is
given by the Minkowski metric (6.3) on classical basis vectors, spacetime is equipped with a
Lorentz metric, with respect to which the vectors eα constitute an orthonormal tetrad basis.
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These results are confirmed considering the structure functions (6.5) of real Minkowski
bases. Using Z, the real and imaginary parts of c may be written as follows:

Re cα
βγ = Re[(Zα

εη
δ
β + ηα

εZ
δ
β)ξM

δ ∂γ ζ ε
M + (∂γ Zα

ε)ξ
M
β ζ ε

M ]
(7.13)

Im cα
βγ = Im[(Zα

εη
δ
β − ηα

εZ
δ
β)ξM

δ ∂γ ζ ε
M + (∂γ Zα

ε)ξ
M
β ζ ε

M ]
Similar expressions are obtained for the real and imaginary parts of c̃, involving the axial
derivatives ∂̃γ instead of ∂γ . Replacing again Z with its ground state expectation value one
obtains the approximate expressions

Re cα
βγ

◦=2Re(ξM
β ∂γ ζ α

M), Im cα
βγ

◦=0,
(7.14)

Re c̃α
βγ

◦=2Re(ξM
β ∂̃γ ζ α

M), Im c̃α
βγ

◦=0

and the commutation relations (6.6) of basis vectors simplify as follows:

[eα, eβ ] ◦=cγ [αβ]eγ , [ẽα, ẽβ ] ◦=c̃γ [αβ]ẽγ , [ẽα, eβ ] ◦=1

2
(cγ

αβ ẽγ − c̃γ
βαeγ ) (7.15)

According to Frobenius’s theorem this shows in particular that the subspaces of the eight-
dimensional tangent spaces spanned by the classical vectors eα are integrable in the vacuum
approximation, forming the tangent bundle of a submanifold, which according to the previ-
ous results is spacetime.

In order that spacetime appear as a classical four-dimensional manifold it is further nec-
essary that the commutators of its tangent basis vectors eα have only small quantum fluctua-
tions, while commutators involving axial basis vectors ẽα fluctuate strongly. In this case the
metric on S is essentially a classical metric, but in tangent directions leaving S there is no
unique notion of distance between points and the manifold has no classical appearance.

7.2 Heisenberg Equation System for Broken Symmetry

In this section the vacuum approximation is applied to the Heisenberg equation system: The
square of the fundamental spinor field appearing on the right hand sides of (6.33), (6.42),
(6.47) and (6.53) is set equal to its ground state expectation value (7.1):

μ
◦=μ0 (7.16)

According to (6.36) this implies that the torsion and current vectors become real:

ImTα
◦=0, ImJα

◦=0 (7.17)

In the last section it has been shown that in the vacuum approximation the structure functions
c are real. From (6.12) then follows that the same is true for the connection coefficients �

Im�α
βγ

◦=0 (7.18)

and the Einstein connection, restricted to derivatives in tangent directions on S , becomes
equal to the Levi-Civita connection of the Lorentz metric on spacetime.

Applying these approximations to the Maxwell equations (6.44) and (6.47), they decom-
pose into separate equations for the electromagnetic and axial field tensors

∇βF αβ ◦= − 1

8
μ0j

α, ∇βF ∗αβ ◦=0; ∇β
˜Fαβ ◦=0, ∇β

˜F ∗αβ ◦=0 (7.19)



3388 Int J Theor Phys (2008) 47: 3341–3390

with Dirac current given by:

jα = i�̄γ α� (7.20)

Although its source vanishes, the axial field itself does not completely vanish, as is shown
by the electromagnetic Einstein equation (6.33), which in the vacuum approximation de-
composes as follows:

Fαβ
◦=1

4
μ2

0Re Iαβ + 1

4
μ−1

0 ∇[αjβ], ˜Fαβ
◦=1

8
μ−1

0 εαβ
γ δ∇γ jδ (7.21)

The axial field is proportional to the dual of the rotation of the Dirac current and is thus
restricted to the interior of matter. Moreover, it will be seen that it is suppressed by a factor
of λ2

P . A similar small term also appears in the Einstein equation for the electromagnetic
field, the main part of which however arises from the polarization tensor:

Fαβ + ˜F ∗
αβ = Pαβ

◦=1

4
μ2

0Re Iαβ (7.22)

Using the identity

i

2
�̄Sαβ� = Re(ϕ+χIαβ) (7.23)

which is derived with help of (4.25) and (4.29), it is seen that the polarization tensor may be
written in the form:

Pαβ
◦= i

16
�̄[γα, γβ ]� (7.24)

The special form of the electromagnetic field provided by the electromagnetic Einstein
equation yields a simple expression for its energy-momentum tensor. In order to derive it,
the electromagnetic and axial field vectors are introduced

Ek = Fk0, Bk = 1

2
εkmnFmn; Hk = ˜Fk0, Dk = −1

2
εkmn

˜Fmn (7.25)

in terms of which (7.22) takes the form:

Dk − Ek
◦=1

4
μ2

0 Imnk, Bk − Hk
◦= − 1

4
μ2

0 Renk (7.26)

On the other hand, the energy-momentum tensor of the electromagnetic field F may be
written in terms of spacetime Pauli matrices as follows:

T em
αβ = Fαγ Fβ

γ − 1

4
ηαβFγ δF

γ δ = −1

2
(Em − iBm)(En + iBn)(�̄

m�n)αβ (7.27)

Inserting the relations (7.26) with axial fields neglected, it is seen with help of (4.29) that the
energy-momentum tensor of the electromagnetic field in the vacuum approximation may be
expressed in terms of the complex spinor structure as follows:

T em
αβ

◦= − 1

32
μ4

0 (I Ī )αβ (7.28)

The vacuum approximation of the Dirac identity (6.53) takes the form

γ α∇α� − 1

8
μ−1

0 (�̄γ5γα�)γ5γ
α�

◦=0 (7.29)
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where the second term on the right hand side of (6.53) involving the axial vector potential
has been neglected due to its smallness. As a consequence of the Fiertz identities the trilinear
interaction term may be written in several equivalent forms:

−(�̄γ5γα�)γ5γ
α� = (�̄γα�)γ α� = (�̄�)� − (�̄γ5�)γ5� (7.30)

In applying the vacuum approximation to the gravitational Einstein equation (6.42), the
possibility is taken into account that the Einstein tensor receives a ground state contribution
from terms in (6.15) quadratic in the imaginary part of the connection coefficients

Gαβ
◦=Gcl

αβ + �Gηαβ, �G = 1

4
〈Im�αβ

βIm�αγ
γ − Im�αβγ Im�αγβ〉0 (7.31)

where Gcl denotes the classical Einstein tensor arising from the real part of the connection
coefficients. Neglecting the term involving the axial vector potential on the right hand side
of (6.42), the Einstein equation takes the approximate form:

Gcl
αβ

◦=1

2
μ−1

0 �̄
↔∇(αγβ)� + TαTβ − 1

4
μ2

0(I Ī )αβ −
[

�G + 1

2
(σ + μ2

0)

]

ηαβ (7.32)

Comparison with (7.28) shows that the third term on the right hand side is proportional to
the energy-momentum tensor of the electromagnetic field. The ground state approximation
of σ is obtained from the trace of (6.41) as follows

σ
◦=1

2
μ−1

0 �̄
↔∇αγ

α� − 1

2
μ2

0
◦= − μ2

0 (7.33)

where the Dirac identity (7.29) has been used in the second step. This shows that the explicit
contribution of the fundamental spinor field to the ground state energy vanishes. However,
the first two terms on the right hand side of (7.32) also contribute, and the complete ground
state energy density is obtained from the trace of (7.32):

(Gcl)α
α ◦= − 4(�G + ��), �� = −1

8
μ2

0 (7.34)

In order to obtain a vanishing (or small) ground state energy on spacetime, the large nega-
tive contribution �� of the spinor field must be compensated by a corresponding positive
contribution �G of the gravitational field. This is not necessarily the result of a fine-tuning.
Rather, the possibility is left open that the ground state expectation values are not constant
on the whole Dirac manifold and spacetime is selected among other four-dimensional sub-
manifolds by the condition that the ground state energy vanishes on S but takes Planck scale
values on other submanifolds.

7.3 Constants of Nature

In order to compare the Heisenberg equation system in the vacuum approximation with
the usual Einstein and Maxwell equations on spacetime, the fields, which up to now were
dimensionless, must be equipped with their physical dimensions by multiplying them with
suitable powers of a scale λ, the magnitude of which will be determined below:

Gαβ → λ2Gαβ. Fαβ → λ2 Fαβ, T em
αβ → λ4T em

αβ

(7.35)
jα → λ3jα, ∇α → λ∇α, � → λ

3
2 �, μ0 → λ

3
2 μ0
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In terms of rescaled fields the gravitational Einstein equation and the Maxwell equations for
F take the form:

Gαβ
◦=1

2
μ−1

0 λ
1
2 �̄

↔∇(αγβ)� − 1

4
μ−2

0 λ(�̄γ5γα�)(�̄γ5γβ�) + 8μ−2
0 λ−1T em

αβ

(7.36)

∇βF αβ ◦= − 1

8
μ0λ

3
2 jα, ∇βF ∗αβ ◦=0

Apart from the quartic contribution to the energy-momentum tensor of the spinor field, these
equations are equal to the Einstein and Maxwell equations for real electromagnetic and
gravitational fields coupled to a Dirac spinor field, provided the constants may be expressed
in terms of the Planck length λP and the fine structure constant α as follows:

μ−1
0 λ

1
2 = g2

0, 8μ−2
0 λ−1 = g2

0g
−2
1 ,

1

8
μ0λ

3
2 = g2

1; g2
0 = 8πλ2

P , g2
1 = 4πα

(7.37)
These conditions yield three equations to determine λ and μ0, which are however consistent
and may be solved as follows:

μ2
0 = 2

√
2g1g

−3
0 = 1

4π

√
αλ−3

P , λ = 2
√

2g0g1 = 16π
√

αλP (7.38)

In terms of rescaled fields the electromagnetic Einstein equations and the Dirac identity take
the form:

Fαβ
◦= i

16
λ �̄[γα, γβ ]� + 1

4
μ−1

0 λ
1
2 ∇[αjβ], ˜Fαβ

◦=1

8
μ−1

0 λ
1
2 εαβ

γ δ∇γ jδ

(7.39)

γ α∇α� + 1

8
μ−1

0 λ
1
2 (�̄γα�)γ α�

◦=0

Inserting (7.38) into (7.36) and (7.39) one obtains the Maxwell equations (1.41), the elec-
tromagnetic (1.43) and gravitational (1.45) Einstein equations as well as the Dirac identity
(1.46) in terms of α and λP .
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